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A Theoretical Appendix

Solving the utility maximization problem (1) subject to (2) and (3) yields the following first

order conditions:
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(A.1)

, where λ is the Lagrange multiplier.

These conditions in turn yield the following expression:
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Solving (A.2) for PI1 yields:

PI∗1 =
Iγ

p1
(A.3)

, where γ = 1{(
p1
p2

)αp( e2
e1

)αe} ρ
1−αpρ

+1
.

Taking logs of (A.3) we obtain the following function for parental investments:

log(PI1) = log(I) + G(e1) + F
(

e1

e2

)
(A.4)

, where G(e1) = −log(p(e1)) and F( e1
e2
) = log(γ). Given that pi = p(ei) is assumed to be a

non-increasing homogeneous function of ei of degree one, p1
p2

can be expressed as a function

of e1
e2

. Therefore, γ can be expressed as a function of the parameters of the model and of e1
e2

.

Let us specify:
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(A.5)

Since e1, e2, p1, p2 are positive, f
(

e1
e2

)
> 0. Also, given that αe and αp are positive, and

∂p(e)
∂e ≤ 0, it follows that

∂ f
(

e1
e2

)
∂

e1
e2

> 0.

Since we are interested in the sign of the effect of children’s relative genetic endowments

( e1
e2

) on parental inputs in child 1 (PI1) (holding constant his/her own genetic endowment level

and p1), and on how it depends on parental inequality aversion (ρ), we can obtain the sign of
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∂log(PI1)
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expression:
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Given that γ, f
(

e1
e2

)
and (1 − αpρ) are always positive, the sign of this partial effect only

depends on the level of parental inequality aversion ρ. Specifically:

• ∂log(PI1)

∂ f
(

e1
e2

) < 0 if and only if ρ < 0

• ∂log(PI1)

∂ f
(

e1
e2

) > 0 if and only if 0 < ρ < 1

• ∂log(PI1)

∂ f
(

e1
e2

) = 0 if and only if ρ = 0

A.1 Model Extension: Public Goods and Spillovers in Investments

We introduce sibling spillovers in parental investments (or a public good component of parental

investments) by assuming that a child’s human capital is a function of the parental investments

he/she and his/her sibling receive following Terskaya (2023):

V̂i(ei, PIi, PI−i) = eαe
i

(
PI1−δ

i PIδ
−i

)αp
(A.7)

, where 0 ≤ δ < 0.5 captures the degree of the public good dimension. When δ = 0, parental

inputs are completely separable between siblings, and the parental utility maximization prob-

lem is identical to the one previously solved. When δ = 0.5, children share parental inputs

equally.

The objective of the parental resource allocation problem is to maximize:

U = {V̂ρ
1 + V̂ρ

2 }
1
ρ (A.8)

subject to (A.7) and (3).

Solving the first order condition of this maximization problem yields:

PI2
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1 + δV̂ρ
2

)
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2

) =
p1
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(A.9)
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This expression directly implies that when ρ = 0, PI2 = p1
p2

PI1. Substituting this into

the budget constraint given by (3) yields that PI1 = I
2p1

and PI2 = I
2p2

, as in the problem

previously solved. Importantly, this result is the same for any value of δ. This indicates that,

when parents are neutral, parental investments in child 1 are only affected by his/her own

endowment (because of the price effect) but they are not affected by child 2’s endowment.

Importantly, the same conclusion is reached when δ = 0.5 (parental investments are shared

by siblings).

In Figure A.1, we analyse how PI1 changes with e2 using equation (A.9). The results

indicate that when parents are inequality averse (ρ < 0) and the spillover effect is large (δ =

0.4), the positive effect of child 2’s endowment on parental investments in child 1 is smaller

than when parental inputs are separable (δ = 0). Similarly, when parents care more about

efficiency (ρ > 0), the negative effect of child 2’s endowment on parental investments in child

1 is attenuated by the sibling spillover effect.

Figure A.1: Changes in the Optimal Parental Investment in Child 1 (PI1) with the
Endowment of Child 2 (e2)
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(b) ρ = 0
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(c) ρ = −1
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(d) ρ = −2

Note: This Figure displays the optimal allocation of PI1 for different values of e2, ρ, and δ. Values are computed
for e1 = 1, p1 = e−0.1, p2 = e−0.1e2 , αe = αp = 0.8.
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B Genome-Wide Association Studies

The human genome is a set of approximately 3 billion nucleotide molecules (adenine, cytosine,

guanine, and thymine) in 23 chromosome pairs. 1 In approximately 99% of genome locations,

there is no variation between people. The locations in the genome where there is some varia-

tion across individuals are called genetic variants or single-nucleotide polymorphisms (SNPs).

For example, at a specific position, the guanine nucleotide may appear for most individuals,

but for a minority of individuals this position is occupied by adenine, which means that there

is a SNP at this position. The two possible molecules at a given SNP are called the major

and minor alleles, where major allele refers to the molecule that is most common at a given

genome position. Individual genetic information is often coded with respect to a reference

genome, and each genetic variable represents the number of reference alleles (0, 1, or 2) at a

given SNP.2 There are about 10 million SNPs in the average person’s genome.

Genome-wide association studies (GWAS) estimate the association between an outcome

of interest (e.g., educational attainment, height, body mass) and a large number of genetic

variants. The analysis consists of running a set of linear regressions of an outcome on the

number of reference alleles separately for each SNP. The size effects of each SNP estimated

in a GWAS can be used to construct weights for summary indexes that measure individu-

als’ genetic predisposition to different traits. These summary indexes are called polygenic

indexes.3

In our analysis we use an educational attainment polygenic index (henceforth EA PGI)

as a measure of educational genetic endowments. In the sensitivity analysis, we also use a

cognitive performance polygenic index (henceforth CP PGI). To date, all GWAS of educational

attainment rely on samples of individuals of European descent, so polygenic indexes are likely

much less predictive and more subject to measurement error for other groups (Lee et al., 2018).

Therefore, we perform our analysis on a sample of European-descent individuals, as most

previous studies that use polygenic indexes.

C Genetic Data in Add Health

In Wave IV of Add Health, respondents were asked for consent for the collection of saliva

samples. Approximately 80% of respondents consented to long-term archiving of their sam-

1A nucleotide is a molecular unit that makes up the building blocks of DNA and RNA.
2The reference allele often but not always coincides with the major allele.
3See Abdellaoui and Verweij (2021) for a comprehensive discussion of polygenic indexes and their interpreta-

tion.
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ples and were eligible for genotyping. About 80% of the sample genotyping was performed

with the Illumina Omni1-Quad BeadChip platform, and the Illumina Omni2.5-Quad Bead-

Chip platform was used with the rest of the sample. After standard quality control proce-

dures, genetic data are available for 9,974 Add Health respondents on 609,130 genetic variants

(common across the genotyping platforms used).4

Given that the set of genotyped variants does not include all genetic variants, genetic impu-

tation was implemented. Genetic imputation is an essential tool in the analysis of genetic as-

sociations because it increases both accuracy and precision in GWAS (Li et al., 2009). The idea

of genetic imputation relies on the fact that there are groups of genetic variants that tend to al-

ways occur together because humans have common distant ancestors.Therefore, with a set of

genetic markers, one can accurately infer a large number of other genetic variants. The Social

Science Genetic Association Consortium (SSGAC) imputed genotypes against the Haplotype

Reference Consortium v1.1 European reference panel using the Michigan Imputation Server.

Before conducting the imputation, the sample was restricted to 5,690 European-ancestry indi-

viduals. After the imputation, the set of genetic variants was restricted to 1,211,662 HapMap3

genetic variants, as these variants provide good coverage of the genome in individuals of

European descent and are generally well-imputed (International HapMap 3 Consortium and

others, 2010).5

C.1 Polygenic Indexes in Add Health

In our analysis we rely on polygenic indexes for Add Health participants provided to Add

Health by the Polygenic Index Repository (Becker et al., 2021). The Polygenic Index Repos-

itory uses a consistent methodology to construct polygenic indexes for 47 phenotypes in 11

datasets, including Add Health. Benjamin et al. (2021) provide a detailed guide regarding

the construction and use of polygenic indexes for Add Health as part of the Polygenic Index

Repository. Given the limitations of polygenic indexes for non-European ancestry individuals,

polygenic indexes in the Polygenic Index Repository are only constructed in the European-

ancestry subsample, leaving 5,689 individuals in Add Health with valid Repository polygenic

indexes. The Add Health codebooks for the polygenic indexes produced by the Polygenic In-

dex Repository are available online (https://addhealth.cpc.unc.edu/wp-content/uploads/

docs/restricted_use/PolygenicIndexInventories.zip).

The Repository polygenic index of outcome t is computed as:

4For more information on the quality control procedures see the Add Health documentation available at:
https://addhealth.cpc.unc.edu/wp-content/uploads/docs/user_guides/AH_GWAS_QC.pdf.

5For more information on imputation procedures see the Add Health documentation available at: https:
//addhealth.cpc.unc.edu/wp-content/uploads/docs/user_guides/SSGAC-PGS_UsersGuide.pdf.
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ĝti =

L

∑
l=1

xilγ̂tl

sd

(
L

∑
l=1

xilγ̂tl

) (C.1)

, where xil is a demeaned count of the number of reference alleles of individual i at SNP l,

and γ̂tl is the weight for SNP l associated with trait t. Polygenic indexes are standardized

meato have mean zero and standard deviation one because each xil is demeaned ( ¯̂gti = 0 and

sd(ĝti) = 1) and sd stands for standard deviation.

The indexes in the Repository are constructed using recent GWAS, as well as the UK

Biobank and 23andMe GWAS. The approach for calculating weights for polygenic indexes

in the Repository involves a Bayesian method (LDpred) that accounts for the correlation be-

tween alleles at different genome locations (Vilhjálmsson et al., 2015). Specifically, a GWAS

separately estimates the effect of each genetic variant on a trait. However, some genetic vari-

ants tend to occur together (they are correlated). Hence, using the effect sizes from separate

regressions estimated in a GWAS as weights for polygenic indexes without any adjustment

for these correlations may limit the predictive power of polygenic indexes (Chatterjee et al.,

2013). LDpred transforms the GWAS coefficients to obtain polygenic weights to account for

this issue. All the Repository polygenic indexes are based on a set of approximately 1,2 million

HapMap3 SNPs.6

The weights for EA PGI in the Repository are constructed using the effects estimated in Lee

et al. (2018) GWAS (excluding Add Health from the GWAS sample) and 23andMe GWAS for

educational attainment in a sample of 1,047,538 individuals.7 The weights for the Repository

CP PGI are based on the effects estimated in Trampush et al. (2017) and the UK Biobank

GWAS for cognitive performance in a sample of 260,354 individuals.

In our analysis, we define children’s EA PGI using variable pgi14 and CP PGI using

variable pgi11.

6An alternative approach to construct polygenic indexes is to select a set of uncorrelated genetic variants that
have the strongest association with an outcome (usually, p-value thresholds of 5 × 10−8, 5 × 10−5, 5 × 10−3 are
used to select the variants) and to construct the polygenic indexes using only these variants and the GWAS effects
as weights. However, such polygenic indexes have significantly lower predictive power than the indexes based on
HapMap3 SNPs with LDpred adjusted weights (Lee et al., 2018; Vilhjálmsson et al., 2015).

7It is recommended to exclude the target cohort (or close relatives of cohort members) for whom the PGI is
computed (Add Health in our case) from the GWAS discovery sample in order to avoid overfitting (Wray et al.,
2013; Becker et al., 2021).
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C.2 Parental Polygenic Indexes

Genetic information and polygenic indexes for parents of Add Health respondent are not

provided, so we construct them as follows. First, we impute genetic markers for parents using

Mendelian imputation of parental genotypes, a technique proposed by Young et al. (2020).

We provide further details on Mendelian imputation in Appendix D. Second, we construct

parental polygenic indexes using the Polygenic Index Repository weights, which were used

to construct polygenic indexes for Add Health respondents.

Since the Repository polygenic indexes are partially based on the results of the 23andMe

GWAS, we first applied for an agreement with 23andMe to use their GWAS summary statis-

tics (https://research.23andme.com/datasetaccess/#how-to). After obtaining this agree-

ment, we requested non-publicly available Polygenic Index Repository weights for educa-

tional attainment that include 23andMe from the SSGAC (https://thessgac.com/). Since the

Repository weights for cognitive performance do not include 23andMe, we downloaded pub-

licly available Polygenic Index Repository weights for cognitive performance from the SSGAC

(https://www.thessgac.org/pgi-repository).

Using the obtained weights and imputed parental genetic markers, we constructed parental

polygenic indexes using Young et al. (2020) Python package SNIPar (fPGS.py routine). The

package is publicly available at https://github.com/AlexTISYoung/SNIPar.

D Mendelian Imputation of Parental Genotypes

To obtain genetic information for parents of Add Health respondents, we apply Mendelian

imputation of parental genotypes, a technique proposed by Young et al. (2020).

This method imputes parental genotypes taking advantage of the fact that genetic data

on siblings contain information on the genotypes of parents because genes are inherited from

parents. Specifically, this method relies on identity-by-descent analysis of siblings’ genetic

variants, using information on whether siblings inherited the same or different genetic vari-

ants from each parent.8 Therefore, this method requires data on siblings’ alleles for each SNP.

For instance, suppose that sibling 1 has the ++ variant at genome location l and sibling 2 has

the −− variant at the same location. Hence, sibling 1 has inherited a + from the mother and

a + from the father, and sibling 2 has inherited a − from the mother and a − from the father,

which implies that the mother and the father have the −+ variant at location l. In contrast,

8Identity-by-descent is a term used in genetics to describe a situation where an individual inherits a particular
genetic variant or mutation from one of their ancestors. This can happen when two individuals who are related
to each other, such as siblings or cousins, both inherit the same genetic variant from a common ancestor. In this
case, the individuals are said to be in an identity-by-descent state with respect to that particular genetic variant.
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suppose that sibling 1 and 2 have the ++ variant. Then we know that both the mother and

the father have at least one + allele, but we cannot identify with certainty the other alleles

that parents have. In this case, the method uses the population allele frequency.

Since it is not possible to identify whether each allele was inherited from the mother

or from the father, the sum of parental genotypes is imputed. Hence, we impute xp f l =

xm f l + x f f l , where xm f l and x f f l denote the maternal and paternal allele count at SNP l in

family f , respectively.

Using this method, we imputed parental alleles on 1,211,662 HapMap3 SNPs using sib-

lings’ HapMap3 SNPs. We use the genetic matrices for Add Health respondents from the

database of Genotypes and Phenotypes (dbGaP, https://www.ncbi.nlm.nih.gov/gap/). For

imputation of parental genes, we use Young et al. (2020) Python package SNIPar (impute_runner

routine). The package is publicly available at https://github.com/AlexTISYoung/SNIPar. For

the imputation, we computed identity-by-descent segments using the algorithm for relation-

ship inference in genome-wide association studies proposed by Manichaikul et al. (2010). The

algorithm is implemented in a publicly available software package, KING (we use the ibdseg

KING command), available for download at https://www.kingrelatedness.com/.

E Genetic Ability and the Genetic Component of Educational At-

tainment

The objective of this section is to analyze how environmental responses to genetic ability may

alter the interpretation of the estimated effects of EA PGI on parental investments. Specifically,

the measure of genetic ability that we use is the EA PGI, that is, a best linear genetic predictor

of educational attainment. Educational attainment might be affected by genetic ability through

certain cognitive and psychological characteristics and through environmental responses (e.g.,

parental investments). Therefore, the weights used to compute EA PGI may capture such

indirect environmental effects. This may imply that in some cases, EA PGI is not a good

proxy for educational genetic ability. In this Appendix we analyse this issue in greater detail.

We deviate from the theoretical model described in Section 2 and we consider that there

are many potential sources of inputs or investments that may affect human capital. We focus

on educational attainment as a measure of human capital, as this is the phenotype used to

compute EA PGI. Furthermore, we consider different dimensions of genetic endowments,

which may affect educational attainment directly and through environmental responses.

Let us denote educational attainment of individual i by EAi. Iki denotes inputs of type
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k = 0, 1, ..., K that affect EAi, which include parental investments denoted by I0i, and other

possible inputs (e.g., inputs from teachers, peers, etc.). GAi denotes child i’s overall genetic

educational ability net of environmental factors, which is possibly a non-linear function of i’s

genetic variants and it is assumed to be standardized (sd(GAi) = 1). For simplicity of notation,

in the remainder of this section we omit subscript i.

Assume that educational attainment is given by:9

EA = ψGA + ∑
k

ωk Ik + ϵ (E.1)

, where ψGA captures the direct effect (net of environmental responses) of genetic endowments

on educational attainment, and ψ and ωk are both positive constants. We are interested in

estimating the effect of educational genetic ability GA on parental investments.

As in Section 2, inputs, which include parental investments, are defined endogenously and

may depend on children’s initial genetic endowments. Specifically, we assume that:

Ik = θkGk + qk ∀k (E.2)

, where Gk denotes some initial genetic characteristics of a child (a function of genetic variants

assumed to be standardized such that sd(Gk) = 1) which affect the level of inputs Ik, and

qk denotes other characteristics. For instance, for parental investments, this equation follows

from (4) and implies that:

I0 = θ0G0 + θs
0Gs

0 + u0 (E.3)

, where GS
0 denotes siblings’ G0, and u0 may include family characteristics and other non-

genetic factors such that q0 = θs
0Gs

0 + u0.

Note that Gk can be decomposed into two terms: a term correlated with GA, and a term

uncorrelated with GA (standardized to have variance 1), such that:

Gk = bkGA +
√

1 − b2
k Gk∼A ∀k (E.4)

, where bk is the correlation coefficient between Gk and GA. This implies that the effects of

interest of GA and sibling’s GA (GS
A) on I0 are θ0b0 and θS

0 b0, respectively.

However, in practice we do not observe GA, and therefore we cannot estimate its effect

on I0. Instead, we have a measure of the genetic component of educational attainment, GEA,

9Note that if we assume that there are only parental inputs (∑k ωk Ik = ω0 I0), this equation is equivalent to
equation (2) with EA = log(V), GA = log(e), and I0 = log(PI).
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which includes the effect of educational genetic ability, GA, and the indirect effects of genes

on educational attainment through environmental responses. Therefore, in our analysis we

make the following assumption:

• Assumption E.1. Genetic educational ability GA is well proxied by the genetic component of

educational attainment GEA.

The analysis below establishes the conditions under which this assumption holds and

assesses the bias in the estimated effect of GA on parental investments if it is violated.

Substituting (E.4) and (E.2) into (E.1) yields:

EA = θEAGEA + uS = ψGA + ∑k ωk(θkGk + qk) + ϵ =

GA(ψ + ∑k ωkθkbk) + ∑k ωkθk

√
1 − b2

k Gk∼A + ∑k ωkqk + ϵ
(E.5)

, such that θEAGEA = GA(ψ + ∑k ωkθkbk) + ∑k ωkθk

√
1 − b2

k Gk∼A and uS = ∑k ωkqk + ϵ.

The first term of equation (E.5) indicates that EA can be both directly and indirectly af-

fected by genetic ability GA. The second term indicates that educational attainment is also

indirectly affected by other genetic characteristics uncorrelated with GA (Gk∼A).

Next, we show which effects will be captured by regressing I0 on EA PGI. However, we

need to impose several assumptions regarding the functional forms of GA, Gk, and GEA:

• Assumption E.2. Genetic characteristics (GA and Gk ∀k) are proxied by additive genetic

factors (ḠA and Ḡk ∀k), i.e., linear combinations of genetic variants (ignoring dominance and

epistasis).10

This assumption is supported by a large and growing body of research that we now

discuss. While non-additive genetic factors may be potentially important, abundant ev-

idence from quantitative genetics indicates that most genetic variance in the analysis

of population data can be captured by additive genetic factors (Falconer and Mackay,

1996). For instance, Hill et al. (2008) evaluate the evidence from empirical studies of

genetic variance components and conclude that additive variance accounts for over half

of and often close to the total genetic variance. Interestingly, their theoretical model

shows that the proportion of the additive genetic variance with respect to the total ge-

netic variance is high even in the presence of dominance and epistasis because most

10Genetic dominance occurs when a particular gene variant, or allele, is expressed more frequently and consis-
tently in an individual or population than other gene variants for a particular trait. This means that the dominant
allele has a stronger effect on the trait than the other, non-dominant alleles. Genetic epistasis is the phenomenon in
which one gene influences the expression of another gene. This means that the effect of one gene on a particular
trait can be modified by the presence of one or more other genes.
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variants have low minor allele frequency. A recent study by Hivert et al. (2021) esti-

mates non-additive genetic variances in human complex traits using genome-wide data

and finds that the average across traits dominance and epistasis genetic variances are

smaller than the additive genetic variance (they estimate that average across traits addi-

tive, dominance, and epistatic genetic factors amount to 0.208, 0.001, and 0.055, respec-

tively). Similarly, Zhu et al. (2015) estimate that the proportion of dominance genetic

variance across 79 traits is approximately a fifth of the proportion of the additive genetic

variance. A recent study by Palmer et al. (2021) evaluates genetic dominance effects in

more than 1,000 phenotypes in the UK Biobank GWAS and finds no evidence that ge-

netic dominance contributes to phenotypic variation. Specifically, their results indicate

that additive components explain on median (across phenotypes) 21 times more of the

phenotypic variance than uncorrelated non-additive components. Along the same lines,

Okbay et al. (2022) provide evidence that the proportion of dominance genetic variance

is negligible for educational attainment.

In what follows, we denote the additive genetic ability and the additive genetic factors

relevant for input k by ḠA and Ḡk, respectively.

• Assumption E.3. The direct-effect additive genetic factor for educational attainment is proxied

by the between-family additive genetic factor for educational attainment.

Equation (E.1) indicates that schooling is affected by qk, which may include parents’ and

siblings’ genetic characteristics that are correlated with children’s own genetic charac-

teristics. Between-family GWAS used to compute polygenic index do not control for

these characteristics, which may bias polygenic weights. To avoid this issue, one would

need to rely on the results of a between-family GWAS that controls for parental genes.

The best linear genetic predictor net of the effect of parental genes is referred to by the

"direct-effect" additive genetic factor.

In their Section "Within-Family Analyses" (p. 198), Trejo and Domingue (2018) derive

the bias in the effect sizes in a within-family model based on a between-family GWAS.

They conclude that the effect sizes would be deflated by a factor equal to the correlation

between the direct-effect additive genetic factor (obtained in the GWAS that controls for

parental genes) and the additive genetic factor (obtained in the ordinary GWAS that does

not control for parental genes). Young et al. (2020) document that this correlation for

education attainment is 0.739, suggesting that the estimated effects found using between-

family GWAS results are likely to be deflated by approximately this factor.
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The standardized additive genetic factor of educational attainment is the best linear pre-

diction of education attainment (EA) given the genetic variants. This linear combination can

be obtained from equation (E.5). Under the assumptions listed above, the additive genetic

factor of educational attainment is:

ḠEA =
ḠA(ψ + ∑k ωkθkbk) + ∑k ωkθk

√
1 − b2

k Ḡk∼A

sd(ḠA(ψ + ∑k ωkθkbk) + ∑k ωkθk

√
1 − b2

k Ḡk∼A)
(E.6)

Let us consider a special case in which Gk = GA ∀ k. In this case, (E.6) transforms into:

ḠEA =
ḠA(ψ + ∑k ωkθk)

sd(ḠA(ψ + ∑k ωkθk)
=


ḠA i f ψ + ∑k ωkθk > 0

−ḠA i f ψ + ∑k ωkθk < 0
(E.7)

Given that ψ > 0 and ωk > 0 ∀ k, ψ + ∑k ωkθk can be negative only if θk is negative for

many inputs. This would imply that there is full compensation of educational attainment and

that EA is inversely related to genetic ability, which is unlikely to be the case. Therefore, we

impose an additional assumption:

• Assumption E.4. The effect of inputs does not fully compensate the effect of genetic ability

on educational attainment. That is, genetic ability GA is positively correlated with the additive

genetic component of educational attainment ḠEA.

This assumption is supported by empirical evidence that the genetic variants included

in EA PGI are positively associated with brain volume, white-matter tract integrity, and

neuronal development and function (e.g., Rietveld et al. 2013; Elliott et al. 2019; Demange

et al. 2021; Lee et al. 2018).

Under this assumption, the additive genetic component of educational attainment is the

correct regressor since ḠA = ḠEA.

When Ḡk ̸= ḠA, the magnitude of the estimated effects of ḠA will generally be biased, but

the signs of the estimated effects of GA will be correct when there is not full compensation

(ψ + ∑k ωkθk > 0).

In particular, it can be shown that the estimated effects of GA on I0 when ḠEA is used as a

proxy for GA will be inflated/deflated by the following factor:

τ =
ψ + ∑k ωkθk(bk + (1 − b2

k)b
k
0/b0)

sd(ḠA(ψ + ∑k ωkθkbk) + ∑k ωkθk

√
1 − b2

k Ḡk∼A)
(E.8)

, where bk
0 is obtained by decomposing Ḡk∼A into a correlated and an uncorrelated component
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with Ḡ0∼A: Ḡk∼A = bk
0Ḡ0∼A +

√
1 − (bk

0)
2Ḡk∼A∼0. Note that b0

0 = 1.

(E.8) indicates that when there is no compensation or reinforcement (θk = 0 ∀k) or when

EA is not affected by investments (ωk = 0 ∀k), the size of the coefficients will be correctly

estimated (τ = 1). When there is no compensation or reinforcement of parental investments

(θ0 = 0), and Ḡk is correlated with Ḡ0 only through ḠA (bk
0 = 0 ∀k ∼ 0 ), the estimated effect

of ḠA will be deflated (τ < 1) unless θk = 0 ∀k.

In order to analyze the magnitude of the potential bias, we simulate (E.8) for the model

with two inputs (I0 and I1) imposing different assumptions about parameter values listed in

Table E.1.

Figure E.1: Relative Amount of Bias Driven by Environmental Responses to Genetic Ability
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Note: The figures simulate the inflation factor τ (on the vertical axes) in the estimated effect of ḠA on I0 when
ḠEA is used as a proxy for ḠA computed according to equation (E.8). A value of 1 indicates that the estimated
effect of ḠA is unbiased. A value of 0.8 indicates that the estimated effect will be 80% of the true effect. Panel (a)
shows the association between the inflation factor and the correlation between Ḡ0 and ḠA (on the horizontal axes).
Panel (b) shows the association between the inflation factor and the effect of children’s genetic characteristic on
parental investments (θ0) for different values of the effects of children’s genetic characteristics and non-parental
investments (θ1). Panel (c) shows the association between the inflation factor τ and θ1 assuming that θ0 = 0 for
different values of the correlation between genetic characteristics that affect parental and non-parental inputs (net
of true genetic ability ḠA), b1

0 = Corr(G0∼A, G1∼A). Panel (d) shows the association between the inflation factor
and the relative effect of inputs (ω0 and ω1) with respect to the direct effect of genetic ability on educational
attainment (ψ) for different values of θ0 and θ1. Parameter values are listed in Table E.1.

First, we show how the bias will change with the correlation between Ḡ0 and ḠA for dif-
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Table E.1: Parameter Values Used for Simulations in Figure E.1

Panel A Panel B Panel C Panel D

ψ 1 1 1 1
ω0 0.5 0.5 0.5 0 − 2
ω1 1 1 1 0 − 2
θ0 −0.2, 0, 0.2 −0.3 − 0.3 0 −0.2, 0, 0.2
θ1 0 −0.2, 0, 0.2 −0.3 − 0.3 −0.2, 0, 0.2
b0 = Corr(Ḡ0, ḠA) 0.4 − 1 0.7 0.7 0.7
b1 = Corr(Ḡ1, ḠA) 0.7 0.7 0.7 0.7
b1

0 = Corr(Ḡ0∼A, Ḡ1∼A) 0.5 0.5 0, 0.5, 0.7 0.5

ferent values of θ0, while assuming that θ1 = 0 (non-parental investments are neutral). Panel

(a) of Figure E.1 shows that when there is compensation (θ0 < 0) or reinforcement (θ0 > 0)

of parental investments, the estimated effects of ḠEA will underestimate and overestimate the

effect of ḠA on parental investments, respectively, but this bias is small when the correlation

between Ḡ0 and ḠA is sufficiently large.

In our second experiment we analyze how the bias will change depending on θ0 and

assuming several values of θ1. Panel (b) of Figure E.1 shows that the effect can be unbiased

when there is compensation of some inputs but reinforcement of other inputs. When inputs

are highly compensatory, the estimated effect of ḠEA will underestimate the effect of ḠA,

while when inputs are reinforcing, the effect will be overestimated. For instance, when non-

parental inputs are as important for schooling as genetic ability and parental inputs are half

as important (ϕ = 2ω0 = ω1), Corr(Ḡ0, ḠA) = Corr(Ḡ1, ḠA) = 0.7, Corr(Ḡ0∼A, Ḡ1∼A) = 0.5 ,

and both inputs are compensatory (θ0 = θ1 = −0.2), the estimated effect of ḠEA will account

for 80.6% of the true effect of ḠA. When both inputs are reinforcing (θ0 = θ1 = 0.2), the

estimated effect of ḠEA will account for 111.5% of the true effect of ḠA. When parental inputs

are compensatory but non-parental inputs are reinforcing (θ0 = −0.2, θ1 = 0.2), the estimated

effect of ḠEA will account for 98.5% of the true effect of ḠA.

In our third experiment we analyze how the bias will change for different values of θ1,

while assuming that θ0 = 0 (parental inputs are neutral). This experiment is motivated by our

results that the overall effect of children’s ability on parental investments is not significant and

close to zero (β̂1 + β̂2 ≈ 0). Panel (c) of Figure E.1 depicts the values of the bias for different

values of Corr(Ḡ0∼A, Ḡ1∼A) and θ1. The results indicate that, even when there is strong com-

pensation or reinforcement of non-parental inputs, the bias in the effect of ḠA on I0 is small.

For instance, when there is reinforcement of non-parental inputs (θ1 = 0.2), again assuming

that non-parental inputs are as important for schooling as genetic ability, that parental inputs

are half as important, Corr(ḠA, Ḡ0) = Corr(ḠA, Ḡ1) = 0.7, and Corr(Ḡ0∼A, Ḡ1∼A) = 0.5, our
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estimates will account for 105.6% of the true effect of ḠA. If there is compensation (θ1 = −0.2),

the estimated effect of ḠEA will account for 90.3% of the true effect of ḠA.

Finally, we look at how the bias will change depending on the relative importance of the

direct effect of genetic ability (ψ) and the effects of inputs (ω0, ω1). Panel D of Figure E.1

depicts the size of the bias depending on ω0/ψ = ω1/ψ for different values of θ0 and θ1.

The results indicate that the bias will be small if inputs have relatively low importance for

schooling with respect to the genetic ability. For example, if there is compensation of non-

parental inputs (θ1 = −0.2) and the effects of both parental and non-parental inputs constitute

50% of the direct genetic effect (assuming again that Corr(ḠA, Ḡ0) = Corr(ḠA, Ḡ1) = 0.7, and

Corr(Ḡ0∼A, Ḡ1∼A) = 0.5), our estimates will account for 95.8% of the true effect of ḠA, and if

there is reinforcement (θ1 = 0.2), they will account for 103.2% of the true effect. If parental and

non-parental inputs are twice as important as the direct effect of genetic ability, our estimated

effects will account for 74.1% and 108.7% of the true effects if there is compensation or rein-

forcement, respectively. Note that our measure of parental investments increases educational

attainment by about 0.11 standard deviations, which is about 3 times smaller than the effect

of EA PGI on educational attainment (see Tables 2 and H.4).

In sum, our results suggest that compensatory inputs (parental and non-parental) may

lead to underestimating the effect of genetic ability on parental investments, while reinforc-

ing inputs may lead to overestimating this effect. The bias will be negligible when inputs

(parental or non-parental) are mainly affected by the same genetic characteristics that directly

affect educational attainment, or when parents display neither reinforcing nor compensating

behaviors (which is consistent with our estimates). Moreover, the bias will be negligible when

the direct effect of genetic ability on schooling is relatively important with respect to the effect

of inputs.

F Measurement Error in the Polygenic Index

In this Appendix we discuss the measurement error problem that arises when using EA PGI

as a measure of the additive genetic component of educational attainment. Since the weights

for the genetic variants used to compute the EA PGI are unobserved and need to be estimated,

the EA PGI is a noisy measure of the additive genetic component of educational attainment.

Moreover, the EA PGI is only based on measured genetic variants, whereas the additive ge-

netic factor it is used to proxy is based on all genetic variants. Below we provide a theoretical

framework used to adjust the estimated effect sizes for this measurement error. The frame-

work is built upon Becker et al. (2021), who derive a measurement error correction method
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for regressions of a phenotype on a PGI. We derive a similar method for regressions of a

phenotype on individuals’ own PGI, siblings’ PGI, and parental PGI.

F.1 Setup

Consider a phenotype y∗. The allele count for individual i for genetic variant j is denoted by

x∗ij. In the derivations we use a mean-centered transformation, so that yi = y∗i − E(y∗i ) and

xij = x∗ij −E(x∗ij). Denote the vector of mean-centered allele counts across J observed SNPs by

Xi = (xi1, xi2, ..., xi J) and the vector of mean-centered allele counts across K unobserved SNPs

by Zi = (xi J+1, xi J+2, ..., xi J+K). The best linear prediction of yi given by all SNPs is:

Gi =
Xiγ + Ziδ

sd(Xiγ + Ziδ)
(F.1)

, where γ and δ minimize E
[
(yi − Xiγ − Ziδ)

2
]
, Gi is referred to as the standardized additive

genetic factor, and the proportion of the variance of yi explained by the standardized additive

genetic factor is called narrow-sense heritability (h2).

The best linear prediction of yi given by J observed SNPs is:

gi =
Xiγ

sd(Xiγ)
(F.2)

, where γ minimizes E
[
(yi − Xiγ)

2
]
, gi is referred to as the standardized additive SNP factor,

and the proportion of the variance of yi explained by gi is referred to as SNP heritability (h2
SNP).

Similarly, we can define the best linear prediction of yi given by unobserved K SNPs as

gmiss
i = Ziδ

sd(Ziδ)
, where gi is referred to as the missing additive genetic factor.

Assuming that Corr(gmiss
i , gi) = 0,

Gi =
√

πgi +
√

1 − πgmiss
i (F.3)

, where π = Var(Xiγ)
Var(Xiγ)+Var(Ziδ)

=
h2

SNP
h2 ≤ 1, as h2

SNP = Var(Xiγ)
Var(yi)

and h2 = Var(Xiγ+Ziδ)
Var(yi)

.

F.2 The standardized additive SNP factor as a proxy for the standardized additive

genetic factor

Consider the model

Yi = βGGi + βGs Gsi + βGp Gpi + z′iδG + ε i (F.4)
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, where Gi, Gsi and, Gpi are standardized additive genetic factors of i, i’s sibling, and i’s

parents, respectively, and zi denotes i’s characteristics. This model is identical to (5), where

β1 = −βGs , β2 = βG + βGs .

Now suppose that we use qi, qsi, and qpi as proxies for Gi, Gsi, and Gpi respectively. Then,

equation (F.4) can be rewritten as:

Yi = βggi + βsgsi + βpgpi + z′iδg + ui (F.5)

, where

βg =
√

πβG

βs =
√

πβGs

βp =
√

πβGp

ui = ε +
√

1 − π
(

βGgmiss
i + βGs g

miss
si + βGp gmiss

pi )

(F.6)

Given that the composite error term ui is uncorrelated with gi, gsi, and gpi, the OLS regres-

sion of Yi on gi, gsi, and gpi will produce consistent estimators of βg, βs, and βp. Note however

that (F.6) implies that the effects of one standard deviation increases in the standardized addi-

tive SNP factors (gi, gsi, gpi) are
√

π =

√
h2

SNP
h2 ≤ 1 times the effects of one standard deviation

increases in the standardized additive genetic factors (Gi, Gsi, Gpi).

Note that if narrow-sense heritability h2 is two times larger than SNP heritability h2
SNP,

as it is suggested by Cheesman et al. (2017), the effect of one standard deviation increase in

the additive SNP factor is
√

2 times smaller than the effect of one standard deviation increase

in the additive genetic factor. We use the former interpretation and we use model (F.5) to

estimate βg, βs, βp, while acknowledging that the effects of a standard deviation increase in

the additive genetic factors are about
√

2 times larger.

F.3 Measurement error in the standardized additive SNP factor

An additional problem arises because the vector of weights γ is not observed and it is esti-

mated in some sample. We define a polygenic index of y as follows:

ĝi =
Xiγ̂

sd(Xiγ̂)
(F.7)

In practice, γ̂ ̸= γ because the estimates of γ are based on final samples and the maximum

level of predictive power is not achieved. We can write the standardized PGI as:

ĝi =
gi + ϵi

sd(gi + ϵi)
(F.8)
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, where ϵi =
Xi(γ̂−γ)
sd(Xiγ)

.

The predictive power of ĝi is the R2 of the regression of yi on ĝi. Becker et al. (2021) show

that R2 =
h2

SNP
1+Var(ei)

< h2
SNP. This suggests that when the weights are estimated with some

error (Var(ϵi) ̸= 0), the predictive power of PGI is strictly lower than SNP heritability.

We use a similar notation as in Becker et al. (2021), and we define ρ2 = 1 + Var(ei) =
h2

SNP
R2 .

Using this notation, PGI can be specified as ĝi =
gi+ϵi

ρ .

If we estimate the effect of the additive SNP factor (gi) on some outcome and instead of

using gi we use ĝi, the estimated coefficients will be biased. In what follows we characterize

this bias in a model with own, siblings’, and parental PGI, and we propose a bias correction

methodology.

F.4 Bias Correction

Consider model (F.5) and suppose that we observe gi, gsi, and gpi with some error and the

observed PGI are specified as:

ĝi =
gi + ϵi

ρg
; ĝsi =

gsi + ϵsi

ρs
; ĝpi =

gpi + ϵpi

ρp
(F.9)

, such that Var(ϵi) = ρ2
g − 1, Var(ϵsi) = ρ2

s − 1, and Var(ϵpi) = ρ2
p − 1. Also note that Var(gi) =

Var(gsi) = Var(gpi) = 1, given that g is standardized.

Following Becker et al. (2021), we assume that ϵ is uncorrelated with all the other variables

(g, Y, z). However, measurement error might be correlated among relatives. Moreover, the

variance of the measurement error might be different in different samples.11 In this section

we assume that sibling and child-parent correlations of g and ρ are known. In Section F.7

we discuss how we set values for θ and ρ. Specifically, let us assume that the true sibling

and child-parent genetic correlations are Corr(gi, gsi) = θ, Corr(gi, gpi) = Corr(gsi, gpi) = θp

(note that since the genetic variance is standardized to 1, the correlations are equal to the

covariances). This implies that:

Cov(ϵi, ϵsi) = ρgρsCov(ĝi, ĝsi)− θ

Cov(ϵi, ϵpi) = ρgρpCov(ĝi, ĝpi)− θp

Cov(ϵsi, ϵpi) = ρsρpCov(ĝsi, ĝpi)− θp.

(F.10)

We further denote the variance-covariance matrix of (ϵi, ϵsi, ϵpi)
′ by Var(Ei).

11This may happen, for instance, if genetic markers have different effects for different cohorts, and the GWAS
in which the weights are estimated is based on a cohort different from the one in which the polygenic indexes are
constructed.
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We first derive the coefficients from the correct model defined by equation (F.5). Denote

αg = (βg, βs, βp, δ′g)
′. OLS estimates of αg are:

α̂g =

 Var(Gi) Cov(Gi, zi)

Cov(Gi, zi) Var(zi)

−1Cov(Gi, Yi)

Cov(zi, Yi)

 = V−1
g

Cov(Gi, Yi)

Cov(zi, Yi)

 (F.11)

, where Gi = (gi, gsi, gpi)
′ and Var(Gi) is the variance-covariance matrix of Gi.

Now consider a model in which Gi is measured with error. The model can be written as:

Yi = β ĝ ĝi + βŝ ĝsi + β p̂ ĝpi + ziδĝ + νi (F.12)

Define αĝ = (β ĝ, βŝ, β p̂, δĝ)′ and Ĝi = (ĝi, ĝsi, ĝ′pi). Then, OLS estimates of αĝ are:

α̂ĝ =

 Var(Ĝi) Cov(Ĝi, zi)

Cov(Ĝi, zi) Var(zi)

−1Cov(Ĝi, Yi)

Cov(zi, Yi)

 = V−1
ĝ P−1

Cov(Gi, Yi)

Cov(zi, Yi)

 (F.13)

, where P =

diag(ρ) 0|G×z|

0|z×G| I|z|

, diag(ρ) is a diagonal matrix with ρg, ρs, ρp on the main

diagonal, I|z| is an identity matrix of the size of z, and 0|z×G| is a matrix of zeros of size z × G.

Note that (F.13) follows from:

Cov(Ĝi, Yi)

Cov(zi, Yi)

 = P−1

Cov(Gi, Yi)

Cov(zi, Yi)

 (F.14)

, where E = (ϵi, ϵsi, ϵpi)
′.

Equation (F.13) implies that:

α̂ĝ = V−1
ĝ P−1Vgα̂g (F.15)

Vg is unobserved, and therefore we want to define it in terms of moments of observables.

Recall that Vĝ =

 Var(Ĝi) Cov(Ĝi, zi)

Cov(Ĝi, zi) Var(zi)

 and Var(Ĝi) =


Var(ĝi) Cov(ĝi, ĝsi) Cov(ĝi, ĝpi)

Var(ĝsi) Cov(ĝsi, ĝpi)

Var(ĝpi)

 =

P−1(Var(Gi) + Var(E)
)

P−1.

Let us define matrix Σ as a partitioned matrix of the same size as Vg with the first block
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being Var(Ei), such that Σ =

Var(Ei) 0|E×z|

0|z×E| 0|z|

.

Therefore,

Vĝ = P−1(Vg + Σ)P−1 (F.16)

and

Vg = PVĝP − Σ (F.17)

This implies that:

α̂ĝ = V−1
ĝ P−1(PVĝP − Σ)α̂g = (P − V−1

ĝ P−1Σ)α̂g (F.18)

If α̂g is a consistent estimator of αg, then plim α̂ĝ = (P − V−1
ĝ P−1Σ)αg. Therefore, the

corrected estimator of αg can be computed as:

αcorr
g = (P − V−1

ĝ P−1Σ)−1α̂ĝ = Aα̂ĝ (F.19)

, where A = (P − V−1
ĝ P−1Σ)−1.

Note that when: (i) there are no covariates, (ii) ρg = ρs = ρp = ρ, and (iii) the true ge-

netic correlation is equal to the observed genetic correlation
(

Corr(ĝi, ĝsi) = Corr(gi, gsi),

Corr(ĝi, ĝpi) = Corr(gi, gpi)
)

, then αcorr
g = ρα̂ĝ. This is similar to the "rule of thumb" derived

in Becker et al. (2021).

F.5 Standard Errors

Equation F.19 implies that:

Var(αcorr
g ) = AVar(α̂ĝ)A′ (F.20)

Standard errors can be computed by taking the square root of the elements in the main

diagonal of this matrix.

F.5.1 Bias in the Standard Errors

In this section we show that the corrected standard errors obtained in the regression with

measurement error will generally differ from the standard errors estimated in the "true" model

given by (F.5). In order to figure out what happens to the estimated standard errors first

consider the following model:
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Yi = β̂ ĝ ĝi + β̂ŝ ĝsi + β̂ p̂ ĝpi + δ̂ĝzi + ν̂i = β̂ ĝ
gi + ϵi

ρg
+ β̂ŝ

gsi + ϵsi

ρs
+ β̂ p̂

gpi + ϵpi

ρp
+ δ̂ĝzi + ν̂i (F.21)

Now let us compute the residual:

ν̂i = Yi − β̂ ĝ
gi + ϵi

ρg
− β̂ŝ

gsi − ϵsi

ρs
− β̂ p̂

gpi − ϵpi

ρp
− δ̂ĝzi (F.22)

Using equation (F.5) we obtain:

ν̂i = βggi + βsgsi + βpgpi + ziδg + ui − β̂ ĝ
gi+ϵi

ρg
− β̂ŝ

gsi−ϵsi
ρs

− β̂ p̂
gpi−ϵpi

ρp
− δ̂ĝzi =

gi(βg −
β̂ ĝ
ρg
) + gsi(βs − β̂ŝ

ρs
) + gpi(βp −

β̂ p̂
ρp
) + zi(δĝ − δ̂g) + ui −

β̂ ĝ
ρg

ϵi − β̂ŝ
ρs

ϵsi −
β̂ p̂
ρp

ϵpi

(F.23)

Rewriting this in matrix form yields the following expression:

ν̂i = (αg − P−1α̂ĝ)
′

Gi

zi

− β̂′diag(ρ)−1E + ui (F.24)

, where β̂ = (β̂g, β̂s, β̂p)′.

The residual contains two additional sources of variation compared to the true error (ui).

The first term is due to the fact that αg is biased towards zero. The second term is due to the

additional variance introduced by the presence of measurement error in Gi. Since the vectors

of random variables (Gi, zi)
′, E, and ui are uncorrelated by assumption, it follows that:

plim Var(ν̂i) = (αg − P−1A−1αg)
′Vg(αg − P−1A−1αg) + (A−1αg)

′P−1ΣP−1A−1αg + Var(ui)

(F.25)

Under homoskedasticity, plim nVar(α̂g) = Var(ui)V−1
g and

plim nVar(αcorr
g ) = plim nAVar(α̂ĝ)A′ = plim AVar(ν̂i)V−1

ĝ A′ =

A
(
(αg − P−1A−1αg)′Vg(αg − P−1A−1αg) + (A−1αg)′P−1ΣP−1A−1αg + Var(ui)

)
(

P−1(Vg + Σ)P−1
)−1

A′ ̸= Var(ui)V−1
g

(F.26)

, where n is the number of observations.

This implies that the variance of the corrected estimator Var(αcorr) in general does not con-

verge in probability to the variance of the coefficients estimated in the "true" model Var(α̂g).
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By means of simulations, we demonstrate that the corrected t-statistics will be biased towards

zero.

F.6 Monte-Carlo Simulations

In order to test how well the error correction procedure proposed in the previous sections

adjusts the estimated coefficients and standard errors, we conduct a battery of Monte-Carlo

simulations.

We simulate data for families. Specifically, we assume that some families may have two

pairs of siblings (pair of siblings 1 and 2, and pair of siblings 2 and 3) and therefore they

would appear in our sample twice. We generate the data such that 90% of families have one

pair of siblings and 10 % have two pairs.

Our data generation process assumes that the outcome y depends on genetic variables G1

(own PGI), G2 (siblings’ PGI), and Gp (parental PGI), as well as on control variables z1 and

z2. Both z1 and z2 are simulated as standard normal random variables. We assume that G1,

G2, and Gp are random variables with mean zero and variance one. The covariance between

G1 and G2 is imposed to be equal to θ set at 0.56 (the theoretical genetic correlation between

siblings assumed in our analysis given the share of MZ twins). The covariance between Gi

and Gp is imposed to be θp = 1/
√

2 for i = 1, 2 (the child-parent correlation in PGI defined in

Appendix A4 of Trejo and Domingue 2018). Given that the sibling genetic correlation is θ, the

intrafamily correlations of G1 and G2 are equal to θ, and the intrafamily correlation of Gp is 1.

The outcome y is generated as follows:

yi = γ1G1i + γ2G2i + γpGpi + α1z1i + α2z2i + ωi, where ωi ∼ N(0, 1)

We simulate y for several values of γ1, γ2, γp. The baseline values are imposed to be

γ1 = 0.05, γ2 = 0.2, γp = 0, and α1 = α2 = 0.2. We use these as the baseline values because

they are similar to the effects of PGI that we estimate in our data. In this baseline scenario, the

obtained yi has mean zero and standard deviation 1.06. We then standardize y so that it has

mean zero and variance one. Therefore, in the correct standardized regressions, the estimated

effects are approximately equal to the assumed effects divided by the standard deviation of

y. For comparison, we also conduct simulations for combinations of γ1 = (−0.2, 0.05, 0.2),

γ2 = (−0.2, 0.2), and γp = (−0.2, 0.2). We also assume that the error term ωi is correlated

across family members and that its intraclass correlation is 0.5.

We generate Ĝ1, Ĝ2, and Ĝp as follows:
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Ĝ1i =
G1i + ϵ1i

ρ
, Ĝ2i =

G2i + ϵ2i

ρ
and Ĝpi =

Gpi + ϵpi

ρ

, where ϵ1, ϵ2, ϵp are generated as correlated random variables with mean zero, variance ρ2 − 1,

Corr(ϵ1, ϵ2) = ρ2Cov(Ĝ1, Ĝ2)− θ, and Corr(ϵi, ϵp) = ρ2Cov(Ĝi, Ĝp)− θp as derived in equation

(F.10). We set ρ = 1.4, which is similar to the value of ρ for EA PGI estimated in Becker et al.

(2021) using the Health and Retirement Study (HRS). We also conduct simulations for ρ = 1.6.

Next, we regress y on Ĝ1, Ĝ2, Ĝp z1, z2 and compute the corrected estimated effects,

standard errors, and t−statistics.

Simulation results for different values of ρ based on 500 simulated samples are shown in

Figure F.1. Simulation results for different effect sizes of G1 assuming that the effect of G2 is

positive and the effect of Gp is zero are depicted in Figure F.2. Simulation results for different

effect sizes of Gp assuming that the effects of G1 and G2 are positive are depicted in Figure F.3.

The simulation results obtained indicate that:

1. The uncorrected OLS regressions ("with error") yield substantial attenuation bias in both

regression coefficients and t−statistics when the effect size is large.

2. The corrected coefficients on average match the correct regression results ("no error").

The corrected t−statistics are biased towards zero with respect to the regression with no

errors.

3. Panel (a) of Figure F.1 shows that the attenuation bias in the estimated coefficients in-

creases with ρ.

4. Similarly, Figures F.2 and F.3 show that the correction method works well for the differ-

ent effect sizes considered.
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Figure F.1: Simulation Results by Value of ρ. Kernel Densities of the Effect Sizes and
t-statistics.
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(b) ρ = 1.6
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Note: This figure displays kernel-smoothed densities of the coefficients for G1, G2, and Gp obtained in 500 sim-
ulated samples of 10, 000 families. 90% of families have one siblings pair and 10% of families have two siblings
pairs. The results show the estimates obtained in the regressions with no measurement error, with measurement
error, and when correcting for measurement error. The effect of G1 ≈ 0.05, the effect of G2 ≈ 0.19, and the effect
of Gp is zero.
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Figure F.2: Simulation Results by the Effect of G1 for a Positive Effect of G2, and a Zero Effect
of Gp. Kernel Densities of the Effect Sizes and t-statistics.

(a) Effect of G1 ≈ −0.19
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(b) Effect of G1 ≈ 0.19
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Note: This figure displays kernel-smoothed densities of coefficients for G1, G2, and Gp obtained in 500 simulated
samples of 10, 000 families. 90% of families have one sibling pair and 10% of families have two sibling pairs. The
results show the estimates obtained in the regressions with no measurement error, with measurement error, and
when correcting for measurement error. The effect of G2 ≈ 0.19, the effect of Gp is zero, and ρ = 1.4.
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Figure F.3: Simulation Results by the Effect of Gp for Positive Effects of G1 and G2. Kernel
Densities of the Effect Sizes and t-statistics.

(a) Effect of Gp ≈ −0.19
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(b) Effect of Gp ≈ 0.19
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Note: This figure displays kernel-smoothed densities of coefficients for G1, G2, and Gp obtained in 500 simulated
samples of 10, 000 families. 90% of families have one sibling pair and 10% of families have two sibling pairs. The
results show the estimates obtained in the regressions with no measurement error, with measurement error, and
when correcting for measurement error. Effects of G1 and G2 ≈ 0.19; ρ = 1.4.
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F.7 Choice of Parameters

The measurement error method previously described requires an assumption about the SNP

heritability of educational attainment (h2
SNP), which is used to compute ρg, ρs, and ρp, and

about the sibling and parent-child correlations of the additive SNP factors (θ = Corr(gi, gsi)

and θp = Corr(gi, gpi).

To infer θ, we estimate pair-wise kinship coefficients in our sample of siblings, exclud-

ing monozygotic (MZ) twins. We use the algorithm proposed by Manichaikul et al. (2010)

for robust relationship inference in genome-wide association studies.12 The estimated av-

erage pair-wise kinship coefficient is equal to 0.249, which implies that the sibling genetic

correlation is equal to 0.498. Given that the full-sibling genetic correlation is not statistically

distinguishable from 0.5, we impose the assumption that there is no assortative mating, which

implies that the parents-child genetic correlation is θp = 1√
2

(Trejo and Domingue, 2018). We

compute θ = 0.5 × (Share non − MZ) + 1 × (Share MZ), given that MZ twins have perfect

genetic correlation.

We estimate h2
SNP for educational attainment and cognitive performance using the genome-

wide complex trait analysis tool (GCTA) (Yang et al., 2011). GCTA estimates the variance

of the trait explained by all measured SNPs instead of testing the association between any

particular SNP and the trait. We apply GCTA to the Add Health sample of European ancestry

individuals with available genetic data. Yang et al. (2011) recommend excluding close relatives

from the analysis, since common environmental effects can inflate the estimates of the genetic

variance. Following their recommendation, we exclude individuals with genetic relatedness

(estimated from genome-wide data) greater than 0.025. This leaves us with 4,818 unrelated

individuals used for the estimation of h2
SNP. One concern with the Add Health dataset is that

it is a school-based survey, so individuals are more likely to share a common environment. If

there is some genetic sorting into schools, then GCTA estimates of the variance of educational

attainment and cognitive performance explained by the SNPs may be inflated.13 In order to

avoid this issue, we remove school fixed effects from educational attainment and cognitive

performance and use the obtained residuals as phenotypes for GCTA estimation of h2
SNP.

For educational attainment, the obtained estimate of h2
SNP is equal to 0.229 (SE = 0.070)

when school fixed effects are adjusted for. In contrast, the estimate of h2
SNP unadjusted for

school selection amounts to 0.471 (SE = 0.069), which is significantly larger than the estimates

12The algorithm is implemented in a publicly available software package, KING, downloadable from https:
//www.kingrelatedness.com/.

13Domingue et al. (2018) document genetic similarity among friends that is mainly driven by non-random
school assignment in the Add Health sample. Yengo et al. (2020) suggest that these results are mainly driven by
uncontrolled population stratification.
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of h2
SNP obtained in other data sets provided in Supplementary Table 4 of Becker et al. (2021).

Therefore, we use 0.229 as a benchmark estimate of h2
SNP for educational attainment. The

estimated R2 in the regression of educational attainment on the EA PGI net of school fixed

effects is equal to 0.080, which implies an estimated baseline value of ρ ≈
√

0.229/0.080 ≈

1.693. The value of ρ unadjusted for school selection is ρ ≈
√

0.471/0.122 ≈ 1.968 (the R2 of

the regression of educational attainment on the EA PGI is 0.122).

We use the Peabody Picture Vocabulary Test (PPTV) score to measure cognitive ability.

For PPVT, the estimated h2
SNP = 0.156 in the analysis adjusted for school fixed affects and to

h2
SNP = 0.341 in unadjusted analysis. R2 = 0.0471 and R2 = 0.0549 when school fixed effects

are adjusted and when they are unadjusted respectively. Therefore, for cognitive performance,

the baseline value of ρ is 1.819 and the unadjusted for school effects value is ρ = 2.492.

Becker et al. (2021) advise users to rely on an estimate of ρ from a larger dataset if their

sample size is too small. They provide estimates of ρ from three large samples: the Health and

Retirement Study (HRS, N = 12, 090), the Wisconsin Longitudinal Study (WLS,N = 8, 949),

and the UK Biobank-3rd partition (UKB, N = 145, 960). Their estimates of ρ for educational

attainment in the HRS, the WLS and the UKB amount to 1.413, 1.649, and 1.452, respectively.

Their estimates of ρ for cognitive performance in WLS and the UKB are 1.991 and 1.697

respectively. We therefore use these values in sensitivity checks provided in Table H.10 of the

Appendix.

G Socioeconomic Index Construction

We use information on parental education, parental occupation, household income, house-

hold receipt of public assistance, and residential building quality to construct a family socioe-

conomic status (SES) index.

We construct parental educational attainment using the question “How far did you go in

school?” addressed to parents in Wave I, as well as the question “How far in school did she(he)

[mother (father)] go?” addressed to children in Wave I about their parents. Maternal/paternal

educational attainment is based on parents’ own answers if they participated in the parental

interview, and on their child’s answers otherwise. Parental educational attainment is defined

as the average of paternal and maternal educational attainment.

We use children’s answers to the question “What kind of work does she (he) [mother (father)]

do?” regarding parental occupation. We assign occupational prestige scores based on the

National Opinion Research Center (NORC) occupational classification.14 We then compute the

14http://ibgwww.colorado.edu/~agross/NNSD/prestige%20scores.html
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parental occupational prestige score as the average of mother’s and father’s prestige scores. If

both parents have no occupation, the value of the index is set to zero.

Family income is based on the following question addressed to parents in Wave I: “About

how much total income, before taxes did your family receive in 1994? Include your own income,

the income of everyone else in your household, and income from welfare benefits, dividends, and all

other sources.”. If family income is missing, we impute missing values using information on

residential building quality, gender, ethnicity, race, and parental education. We then take the

log of family income (adding 1 in order to avoid missing values if family income is zero).

As for household receipt of public assistance, we rely on the following question asked to

children in Wave I: “Does she (he) [mother (father)] receive public assistance, such as welfare?”. We

then compute a parent on welfare indicator as the average of mother’s and father’s indicators.

We construct a residential building quality variable using the question "How well kept is the

building in which the respondent lives?" reported by interviewers. We create a dummy variable

"good quality residential building", which takes the value one if the answer was "very well

kept" or "fairly well kept", and zero if the answer was "poorly kept" or "very poorly kept".

Finally, we conduct a principal component analysis of parental education, parental occupa-

tional prestige, family income, household receipt of public assistance, and residential building

quality to produce a obtain index. The first principal component explains 44.8% of the vari-

ance of these variables. We use loadings on this component to compute a SES index, and then

we standardize it to have mean 0 and standard deviation 1.

31



H Tables and Figures

Table H.1: Summary Statistics of Regressors

Mean Std. Dev

Polygenic Indexes
EA PGI 0.000 1.000
Sibling’s EA PGI 0.000 1.000
Parental EA PGI 0.000 1.000
EA PGI-Sibling’s EPGI 0.000 0.936
CP PGI 0.000 1.000
Sibling’s CP PGI 0.000 1.000
Parental CP PGI 0.000 1.000
CP PGI-Sibling’s CP PGI 0.000 0.987

Baseline Controls
Age 16.770 1.477
Age squared 283.419 48.753
Age-Sibling’s age (months) 19.290 17.025
Female 0.508 0.500
Female sibling 0.533 0.499

Additional Controls
Rural 0.342 0.473
Both parents live in household 0.776 0.417
SES index 0.000 1.000

N 604

Note: EA PGI is the educational attainment polygenic index,
CP PGI is the cognitive performance polygenic index, and
SES index is a socio-economic index constructed as described
in Appendix G. PGI is always standardized to have mean 0
and standard deviation 1.
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Table H.2: Parental Investment Indicators

Mean Std. Dev N

Parental Investment Index 0.000 1.000 604
Maternal Investment Index 0.000 1.000 579
Paternal Investment Index 0.000 1.000 481

Parental Investment Index Componponents
Maternal Investment Index Components
Visited some event with mother. W1 0.271 0.445 579
Talk about school with mother. W1 0.644 0.479 579
Worked on a project with mother. W1 0.128 0.334 579
Talk about other school things with mother. W1 0.561 0.497 579

Paternal Investment Index Components
Visited some event with father. W1 0.243 0.429 481
Talk about school with father. W1 0.543 0.499 481
Worked on a project with father. W1 0.081 0.273 481
Talk about other school things with father. W1 0.497 0.501 481

Additional Parental Index Components
Nr days at least 1 parent present when eating evening meal in past 7d 4.456 2.458 603

Note: Parental investment indexes are standardized to have mean 0 and standard deviation 1.
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Table H.3: Across- and Within-Family Standard Deviations of Parental
Investment Indexes

(1) (2) (3) (4) (5) (6)

Pooled Sample Non-Twins Twins
Across Within Across Within Across Within

Parental Investment Index 1.000 0.587 1.005 0.620 0.990 0.509
Maternal Investment Index 0.998 0.579 0.999 0.616 0.997 0.487
Paternal Investment Index 1.001 0.582 0.998 0.606 1.007 0.527

Note: This table reports standard deviations of the parental investment indexes (columns 1, 3,
and 5), and the same standard deviations when family fixed effects are removed (columns 2, 4,
and 6).
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Table H.4: Parental Investment Indexes and Educational Attainment in Wave IV

(1) (2) (3) (4) (5) (6)

Parental Investment Index 0.175 0.112
(0.039) (0.034)

[<0.001] [<0.001]
Maternal Investment Index 0.167 0.106

(0.040) (0.035)
[<0.001] [0.003]

Paternal Investment Index 0.187 0.133
(0.043) (0.038)

[<0.001] [0.001]

Controls No Yes No Yes No Yes
N 604 604 579 579 481 481
R2 0.031 0.359 0.028 0.353 0.034 0.348

Note: This table reports OLS coefficient estimates of the association between educational attainment
(standardized to have mean 0 and standard deviation 1) and parental investments (as measured by
an index standardized to have mean 0 and standard deviation 1). The regressions include age, age-
squared, a female dummy, a rural area dummy, an indicator that both parents cohabit, the SES index,
and parental EA PGI. Standard errors clustered at the family level are in parentheses.
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Table H.5: Summary Statistics for Baseline Characteristics in Estimation and Representative Samples

(1) (2) (3) (4) (5) (6) (7) (8)

Representative Sample Only White Estimation Sample P-value for the difference
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. (1)-(5) (3)-(5)

EA PGI - - 0.007 1.008 0.000 1.000 - 0.866
CP PGI - - 0.056 0.933 0.000 1.000 - 0.199
Black 0.164 0.370 0.000 - 0.000 - - -
Age 15.918 1.784 15.862 1.755 16.770 1.477 <0.001 <0.001
Female 0.490 0.500 0.489 0.500 0.508 0.500 0.380 0.373
Rural 0.281 0.447 0.333 0.469 0.342 0.473 0.002 0.665
Both parents live in household 0.710 0.454 0.775 0.418 0.776 0.417 <0.001 0.940
SES index -0.028 0.982 -0.040 0.983 0.000 1.000 0.510 0.345
Parental Investment Index -0.013 1.039 0.041 1.043 0.000 1.000 0.755 0.341
Maternal Investment Index -0.017 1.007 0.040 1.011 0.000 1.000 0.696 0.360
Paternal Investment Index 0.050 1.059 0.103 1.060 0.000 1.000 0.290 0.033

N 18,523 9,452 604

Note: EA PGI is the educational attainment polygenic index, CP PGI is the cognitive performance polygenic index, SES index is a socio-economic
index constructed as described in Appendix G. The sample of "only white" individuals is obtained by using genetic race for individuals with
available genetic information and self-reported race for those without available genetic information. EA PGI, CP PGI, SES index, and parental
investment indexes are standardized using means and standard deviations of these variables in the estimation sample. Statistics from columns
1-4 are computed using the Add Health Wave I grand sample weights.
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Table H.6: Balancing Tests

(1) (2) (3) (4) (5) (6) (7) (8)

Baseline Controls Additional Controls
Age Age squared Age difference Female Female sibling Rural Both parents cohabit SES

EA PGI-Sibling’s EA PGI 0.022 0.016 0.090 0.036 0.022 -0.039 -0.077 -0.101
SE (0.080) (0.080) (0.084) (0.082) (0.091) (0.085) (0.091) (0.078)
p − value [0.786] [0.840] [0.283] [0.659] [0.808] [0.651] [0.401] [0.193]

EA PGI 0.002 0.003 -0.097 -0.057 -0.021 -0.012 0.114 0.271
SE (0.081) (0.080) (0.076) (0.078) (0.080) (0.075) (0.080) (0.072)
p − value [0.976] [0.967] [0.200] [0.472] [0.793] [0.877] [0.157] [<0.001]

Parental EA PGI 0.032 0.030 0.060 0.034 -0.110 -0.168 0.040 0.394
SE (0.074) (0.074) (0.062) (0.068) (0.068) (0.081) (0.092) (0.066)
p − value [0.669] [0.682] [0.330] [0.623] [0.107] [0.039] [0.663] [<0.001]

N 604 604 604 604 604 604 604 604

Note: EA PGI is the educational attainment polygenic index. This table displays OLS coefficients obtained after regressing each control variable on sibling
differences in EA PGI, own EA PGI, and parental EA PGI. EA PGI is always standardized to have mean 0 and standard deviation 1. All individual and
family characteristics are measured in Wave I of Add Health. Coefficient estimates and standard errors are measurement-error-corrected as described in
Appendix F. Standard errors clustered at the family level are in parentheses.
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Table H.7: The Effect of Educational Polygenic Index and
Sibling Differences in Educational Polygenic Indexes on

Parental Investments. Non-corrected Results

(1) (2) (3)

Pooled Sample Non-Twins Twins

EA PGI-Siblings EA PGI -0.222 -0.213 -0.123
SE (0.084) (0.109) (0.158)
p − value [0.009] [0.052] [0.439]

EA PGI 0.294 0.227 0.361
SE (0.150) (0.203) (0.223)
p − value [0.051] [0.264] [0.108]

Parental EA PGI -0.159 -0.100 -0.233
SE (0.136) (0.174) (0.235)
p − value [0.243] [0.564] [0.322]

N 604 412 192

Note: EA PGI is the educational attainment polygenic index. This table
reports OLS estimated effects of sibling difference in EA PGI, own EA PGI,
and parental EA PGI on parental investments (as measured by an index
standardized to have mean 0 and standard deviation 1) in the pooled sam-
ple (1), in the sample of non-twins (2), and in the sample of twins (3). EA
PGIs is always standardized to have mean 0 and standard deviation 1. The
regressions include age, age-squared, sibling differences in age (only in-
cluded in the non-twin sample), a female dummy, and a female sibling
dummy. Standard errors clustered at the family level are in parentheses.

38



Table H.8: Heterogeneous Effects of Educational Polygenic Index and Sibling Differences in
Educational Polygenic Indexes on Parental Investments

(1) (2) (3) (4)

Maternal Investment Paternal Investment Only Females Only Males

EA PGI-Sibling’s EA PGI -0.220 -0.163 -0.249 -0.220
SE (0.083) (0.096) (0.113) (0.118)
p − value [0.008] [0.090] [0.028] [0.064]

EA PGI 0.177 0.179 0.300 0.150
SE (0.081) (0.080) (0.106) (0.118)
p − value [0.028] [0.026] [0.005] [0.206]

Parental EA PGI 0.033 0.019 -0.002 0.013
SE (0.080) (0.072) (0.104) (0.102)
p − value [0.677] [0.792] [0.988] [0.895]

N 579 481 307 297

Note: EA PGI is the educational attainment polygenic index. This table reports the estimated effects of sibling differ-
ence in EA PGI, own EA PGI, and parental EA PGI on parental investments (as measured by an index standardized
to have mean 0 and standard deviation 1) in the pooled sample. EA PGI is always standardized to have mean 0 and
standard deviation 1. The regressions include age, age-squared, sibling differences in age (only included in the non-
twin sample), a female dummy, and a female sibling dummy. Columns 1 and 2 report the results obtained when the
parental investment index is based only on maternal and paternal investment variables respectively. The regressions
in columns 3 and 4 report the estimated effects for female and male children separately. Coefficient estimates and
standard errors are measurement-error-corrected as described in Appendix F. Standard errors clustered at the family
level are in parentheses.
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Table H.9: The Effect of Polygenic Indexes and Sibling Differences in Polygenic Indexes on Parental
Investments. Sensitivity

(1) (2) (3) (4) (5) (6)

Panel A: Cognitive Performance PGI Panel B: MZ twins excluded
Pooled Sample Non-Twins Twins Pooled Sample Non-Twins Twins

PGI-Sibling’s PGI -0.200 -0.235 -0.058 -0.229 -0.270 -0.068
SE (0.092) (0.116) (0.171) (0.082) (0.100) (0.137)
p − value [0.031] [0.044] [0.735] [0.006] [0.007] [0.622]
PGI 0.011 -0.078 0.130 0.204 0.174 0.303
SE (0.072) (0.090) (0.118) (0.085) (0.095) (0.184)
p − value [0.878] [0.384] [0.270] [0.017] [0.067] [0.103]
Parental PGI 0.046 0.087 0.059 -0.005 0.023 -0.064
SE (0.075) (0.096) (0.111) (0.081) (0.093) (0.155)
p − value [0.540] [0.367] [0.596] [0.946] [0.800] [0.679]
N 604 412 192 531 412 119

Panel C: Controls for 20 Principal Components Panel D: Extended Sample
Pooled Sample Non-Twins Twins Pooled Sample Non-Twins Twins

PGI-Sibling’s PGI -0.244 -0.305 -0.014 -0.105 -0.128 0.002
SE (0.087) (0.106) (0.160) (0.054) (0.067) (0.088)
p − value [0.005] [0.004] [0.932] [0.051] [0.055] [0.981]
PGI 0.215 0.159 0.299 0.124 0.111 0.128
SE (0.078) (0.097) (0.134) (0.069) (0.079) (0.103)
p − value [0.006] [0.104] [0.027] [0.071] [0.163] [0.216]
Parental PGI 0.000 0.035 0.056 0.117 0.132 0.083
SE (0.079) (0.104) (0.127) (0.064) (0.075) (0.098)
p − value [0.998] [0.737] [0.657] [0.067] [0.079] [0.399]
N 604 412 192 1215 832 383

Note: PGI is the polygenic index. This table reports the estimated effects of sibling differences in PGI, own PGI, and parental
PGI on parental investments (as measured by an index standardized to have mean 0 and standard deviation 1) in the pooled
sample, in the sample of non-twins, and in the sample of twins. PGI is always standardized to have mean 0 and standard
deviation 1. The regressions include age, age-squared, sibling differences in age (only included in the non-twin sample), a
female dummy, and a female sibling dummy. Panel A uses cognitive performance polygenic index (CP PGI), while all other
panels use educational attainment polygenic indexes (EA PGI). Panel B excludes monozygotic twins from the sample, Panel C
includes the first 20 principal components of the full genetic relatedness matrix as controls, and Panel D expands the sample
of our benchmark analysis (Table 3) to include firstborns and later-born siblings. Coefficient estimates and standard errors are
measurement-error-corrected as described in Appendix F. Standard errors clustered at the family level are in parentheses.
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Table H.10: The Effect of Polygenic Indexes and Sibling Differences in Polygenic Indexes on Parental
Investments. Sensitivity to Different Values of Heritability

(1) (2) (3) (4) (5) (6) (7)

EA PGI with heritability estimated in: CP PGI with heritability estimated in:
AH (no school FE) HRS WLS UKB AH (no school FE) WLS UKB

PGI-Sibling’s PGI -0.273 -0.194 -0.227 -0.200 -0.280 -0.220 -0.186
SE (0.094) (0.067) (0.078) (0.069) (0.129) (0.101) (0.086)
p − value [0.004] [0.004] [0.004] [0.004] [0.030] [0.031] [0.031]

PGI 0.247 0.177 0.206 0.181 0.015 0.012 0.010
SE (0.090) (0.065) (0.075) (0.066) (0.100) (0.079) (0.067)
p − value [0.006] [0.006] [0.006] [0.006] [0.882] [0.879] [0.877]

Parental PGI 0.000 -0.001 -0.001 -0.001 0.063 0.050 0.043
SE (0.086) (0.061) (0.072) (0.063) (0.103) (0.082) (0.070)
p − value [1.000] [0.989] [0.993] [0.990] [0.542] [0.540] [0.539]

N 604 604 604 604 604 604 604

Note: EA PGI is the educational attainment polygenic index and CP PGI is the cognitive performance polygenic index.
This table reports the estimated effects of sibling differences in PGI, own PGI, and parental PGI on parental investments (as
measured by an index standardized to have mean 0 and standard deviation 1). PGI is always standardized to have mean 0
and standard deviation 1. The regressions include age, age-squared, sibling differences in age (only included in the non-twin
sample), a female dummy, and a female sibling dummy. Coefficient estimates and standard errors are measurement-error-
corrected as described in Appendix F. Columns 1-4 report the estimated effects of EA PGI and columns 5-7 report the effects
of CP PGI using different values of R2 and SNP heritability based on different data sources for the measurement-error
correction. Columns 1 and 5 use estimates of SNP heritability for EA PGI and CP PGI based on the sample of unrelated
individuals from Add Health (not adjusted for school fixed effects). The rest of the columns correct for measurement error
using SNP heritability and R2 estimates from Supplementary Table 4 of Becker et al. (2021) for the Health and Retirement
Study (HRS), the Wisconsin Longitudinal Study (WLS), and the UK Biobank - 3rd partition (UKB3). Standard errors clustered
at the family level are in parentheses.
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Figure H.1: Educational Polygenic Indexes (Standardized). Kernel Density Estimates
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Note: EA PGI is the educational attainment polygenic index. This figure displays kernel-smoothed densities of
own EA PGI, siblings’ EA PGI, and imputed parental EA PGI standardized to have mean 0 and standard deviation
1. No. observations: 604.
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Figure H.2: Distribution of Placebo t-values
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Note: EA PGI is the educational attainment polygenic index. This figure shows the distributions of the t-values
of the tests β1 = 0, β2 = 0, and β3 = 0 obtained when estimating 1000 placebo regressions of the parental
investment index, where actual values of EA PGI, siblings’ EA PGI, and parental EA PGI are replaced with those
from randomly chosen families from our sample. The baseline controls listed in Table H.6 are included in the
regressions. Coefficient estimates and standard errors are measurement-error-corrected as described in Appendix
F. Standard errors are clustered at the family level.
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