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Abstract

We take advantage of recent advances in behavioral genetics to revisit a classic

question in economics: how do parents respond to children’s endowments and

to differences in endowments between siblings? We use a summary index based

on DNA, which is fixed at conception and assigned randomly across siblings,

as a proxy for educational endowments. We find that parents of non-twins dis-

play inequality aversion: given the absolute endowment level of one child, they

invest less in him/her if his/her sibling has a lower genetic predisposition to ed-

ucational attainment. In contrast, we find no evidence that parents of dizygotic

twins react to endowment differences between their children.
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1 Introduction

Is the family an equalising agent? Do parents exacerbate or mitigate differences in

children’s endowments by reallocating resources within the family? These are crucial

questions for both academics and policy makers, as parental responses should be

considered when designing policies aimed at fostering human capital and reducing

inequalities between children.

The literature analysing how parental investments are related to children’s endow-

ments is vast and it has been continuously expanding since the seminal contributions

of Becker and Tomes (1976) and Behrman et al. (1982). Becker and Tomes (1976) pro-

posed a model of resource allocation within the family and analysed how parental

investments are affected by differences in their children’s abilities or other aspects of

their endowments. They show that, if the cost of increasing children’s human cap-

ital is negatively related to their endowments (that is, if such cost is higher for less

able children), parents may reinforce differences in children’s endowments by invest-

ing more in higher-endowed children. By contrast, Behrman et al. (1982) develop a

general preference model that introduces parental aversion to inequality in the distri-

bution of their children’s human capital. In their framework, the degree of parental

inequality aversion plays a central role in determining whether parents will follow a

compensating strategy (devoting more resources to children with lower endowments)

or a reinforcing strategy (devoting more resources to their better-endowed siblings).

The subsequent empirical literature has so far reached mixed conclusions on

whether parents compensate or reinforce differences in their children’s endowments.1

Some studies have found evidence of parental compensatory behavior (Behrman

et al., 1982; Pitt et al., 1990; Bharadwaj et al., 2018; Terskaya, 2023; Savelyev et al.,

2022), while others have found that parents follow a reinforcing strategy (Behrman

et al., 1994; Datar et al., 2010; Aizer and Cunha, 2012; Hsin, 2012; Frijters et al.,

2013; Rosales-Rueda, 2014). Some authors have also uncovered different patterns of

parental behavior across contexts or socio-demographic groups (Behrman, 1988b,a;

1See Almond and Mazumder (2013) for a review.
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Datar et al., 2010; Hsin, 2012; Restrepo, 2016; Abufhele et al., 2017; Bhalotra and

Clarke, 2019). Interestingly, Yi et al. (2015) provide evidence that, when faced with

differences in health endowments between their children, parents react by compen-

sating in terms of health investments while, on the other hand, they reinforce inequal-

ities through their educational investment decisions. This lack of consensus is to be

expected because different authors use different measures of children’s endowments

and/or parental investments in different contexts, and, perhaps more importantly,

this literature presents several identification challenges that are dealt with in various

ways.

This article combines the traditional literature on intra-household resource allo-

cation with recent advances in behavioral genetics to study how parents respond to

adolescents’ educational genetic endowments and to differences in educational ge-

netic endowments between siblings. We extend the previous empirical literature on

intra-household resource allocation in three ways.

First, we take into account that parental investment decisions depend both on

parental preferences regarding inequality in the distribution of their children’s hu-

man capital (Behrman et al., 1982), as well as on how costly it is for parents to increase

their children’s human capital —also known as the price effect (Becker and Tomes,

1976). We motivate our empirical analysis by means of a general parental prefer-

ence model that incorporates both mechanisms, as previously proposed by Terskaya

(2023). Importantly, evidence based on family fixed effects models —which compare

parental investments across children within the family— is not fully informative on

whether parents are inequality averse or not, as even inequality averse parents may

follow a reinforcing strategy if the cost of investing in lower-endowed children is

sufficiently higher than the cost of investing in higher-endowed children (Terskaya,

2023). To address this issue, we estimate how parental investments in one child are

affected by the divergence between his/her genetic endowment and that of his/her

sibling, while holding constant the child’s own genetic endowment, which serves as

a proxy for the costs to adding to his/her quality faced by the parents.
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We pose the following questions: do parents react to adolescents’ endowment lev-

els? Do they invest more or less in children who are more or less able than their sib-

lings but who are otherwise comparable in terms of their own endowment, and hence

in the costs of investing in them? Distinguishing parental preferences for equality ver-

sus efficiency from the price effect is important for policy design and for assessing

the effectiveness of compensatory interventions designed to help disadvantaged chil-

dren because parents will reinforce or attenuate (depending on their preferences) the

impact of such interventions by reallocating resources within the family.

Second, we use an educational attainment polygenic index —a summary measure

of genetic variants that predicts educational attainment— as an indicator of chil-

dren’s educational genetic endowments.2 Not only do these indexes explain about

12-15% of variation in educational attainment (Okbay et al., 2016; Lee et al., 2018;

Becker et al., 2021; Okbay et al., 2022), but they also allow endogeneity issues to be

alleviated. In particular, endowment indicators measured during childhood may be

the result of prior parental (both post- and pre-natal) investments, while endowment

indicators measured at birth (e.g., birth weight) for singleton siblings may reflect dif-

ferences in pre-natal investment decisions (Almond and Currie, 2011; Currie, 2011;

Del Bono et al., 2012, among others). By contrast, genes are fixed at conception and

hence cannot be the consequence of parental investment choices. Another important

advantage of using an endowment measure based on DNA is that it is randomly as-

signed across siblings conditional on parental genotype. Our empirical model relies

on this randomization because we control for parental polygenic indexes. Specifically,

since we do not observe parental genetic variants, we conduct Mendelian imputation

of parental genotypes, a technique proposed by Young et al. (2020, 2022).

Third, we focus on parental responses to differences in adolescents’ educational

genetic endowments rather than health endowments or shocks, while, with some

exceptions, most previous studies have focused on the latter.3 This may be due to the

2In our data up to 14% of the variation in educational attainment is explained by the educational
attainment polygenic index.

3See, for example, Rosales-Rueda (2014), Halla and Zweimueller (2014), Yi et al. (2015).
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fact that at-birth measures of endowments (other than birth weight), which are less

likely to suffer from reverse causality than indicators measured later on in life, are

not readily available. Be that as it may, we know much less about parental responses

to differences in their children’s educational endowments than about how parents

react when they face differences in their children’s health endowments.

We use data from the sibling sample of the National Longitudinal Survey of Ado-

lescent to Adult Health, a survey of youth in the 7th through 12th grades in the

United States in 1995. We find evidence that American parents of non-twin siblings

of European-ancestry display inequality aversion because, given a child’s absolute

level of educational genetic endowment, they invest less in him/her if his/her sibling

is less-endowed, while also holding constant other characteristics, including parental

genetic propensity for education. However, for parents of twins, the effect is not

statistically distinguishable from zero. To explain this result, we incorporate a pub-

lic good component when modelling parental investments. Bharadwaj et al. (2018)

estimate that the public good component of parental investments is especially impor-

tant for parents of twins, potentially because it is more difficult to invest differently

across siblings who are closer together in age than among siblings who are farther

apart. Our theoretical results suggest that the public good component attenuates the

effect of parental inequality aversion on parental investments, which is consistent

with the difference in our estimated effects for non-twins and twins.

Our study speaks to a broad and emerging literature that aims at integrating ge-

netics and the social sciences (Beauchamp et al., 2011; Benjamin et al., 2008, 2012;

Conley and Fletcher, 2017; Lehrer and Ding, 2017). For example, recent contributions

have studied the association between educational polygenic indexes or other genetic

markers and human capital accumulation (Ding et al., 2006; Domingue et al., 2015;

Papageorge and Thom, 2020; Ronda et al., 2020), labor market outcomes (Papageorge

and Thom, 2020), and wealth at retirement (Barth et al., 2020, 2022). However, there

is still much to learn regarding the mechanisms through which genetic endowments

affect socioeconomic outcomes, and whether their impact is reinforced or mitigated
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by environmental factors in different contexts. For instance, Breinholt and Conley

(2020) and Houmark et al. (2020) find that early parental investments increase with

young children’s genetic endowments even when accounting for parental genes.4 We

complement these studies by separately assessing the relevance for later parental

investment decisions of adolescents’ absolute and relative (with respect to their sib-

lings) genetic propensity for education, while controlling for parental genes. We also

contribute to studies that show that genetically influenced characteristics of close rel-

atives can affect individuals’ outcomes (Kong et al., 2018; Young et al., 2020, 2022;

Houmark et al., 2020; Wertz et al., 2019).

We also take into account empirically and analytically several potential limitations

of polygenic indexes. For instance, as argued in Becker et al. (2021), since the weights

used to compute polygenic indexes are estimated in samples, they measure the ad-

ditive genetic component of educational attainment with noise. Following Becker

et al. (2021), we adjust our estimated effects for measurement error in polygenic in-

dexes. We extend the Becker et al. (2021) measurement-error correction method for

regression models that include not only individuals’ polygenic indexes, but also the

polygenic indexes of their relatives. We show that even the corrected estimated effects

and standard errors are likely to be conservative.

The remainder of the paper is organized as follows. The next section lays out a

model that guides our empirical estimation. In Section 3, we discuss our empirical

strategy, focusing on how we exploit the availability of genetic data to address the

empirical challenges involved in disentangling the price effect from the impact of

parental preferences for equality versus efficiency. In Section 4 we describe the Add

Health data used as well as our measure of genetic predisposition to educational

attainment, and we show that it correlates with several education-related indicators in

our sample. Section 5 discusses our estimation results, Section 6 presents robustness

checks, and Section 7 concludes.
4Behrman et al. (1994) and Savelyev et al. (2022) exploit differences between allocations for iden-

tical versus nonidentical twins to estimate the effects of relative endowments on parental investment
decisions.
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2 Theoretical Model

We propose a theoretical framework that builds upon the classical intra-household

allocation models of Becker and Tomes (1976) and Behrman et al. (1982) in order to

illustrate how parental investment decisions depend on children’s endowments. This

framework is similar to the one presented in Terskaya (2023) to study the schooling

gap between disabled and non-disabled individuals in Mexico.

We assume that parental preferences in family f can be represented by the utility

function Up f = Up f (c, V1 f , .., Vn f ), where c denotes parental consumption and Vi f is

the human capital of child i in family f . For simplicity of notation, in the remainder

of this section we omit the family subscript, f , and we consider allocations within

a particular two-child family. However, note that parental preferences might vary

across families depending on the age gap between children (as discussed at the end

of this section), children’s sex, parental socio-economic status, institutions, etc. Such

heterogeneity is ultimately an empirical question. We also assume that parental pref-

erences are separable in consumption, which allows one to analyse the allocation

of resources among children regardless of parental consumption. In particular, we

specify parental preferences using a CES utility function as in Behrman et al. (1982):

U =
{

Vρ
1 + Vρ

2
} 1

ρ (1)

The main advantage of this utility form is that ρ measures the degree of parental

inequality aversion across children. When 0 < ρ < 1 parents do not dislike inequality

in the distribution of human capital of their children and, instead, they care about

efficiency. In this case, parents follow a “reinforcement strategy”. In the extreme case

of linear preferences, parents are indifferent about inequality between children, and

they maximize the sum of the expected human capital of their children. When ρ < 0,

parents are more concerned about equality than efficiency, that is, they are inequality

averse. A special case of inequality aversion is the Rawlsian case, in which parents are

unwilling to accept any difference between children’s human capital. When ρ = 0,
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parents trade-off equality and efficiency.

Following Behrman et al. (1982), we assume that a child i’s human capital function

has the following form:

V(ei, PIi) = eαe
i PIαp

i (2)

, where ei denotes the genetic endowments of child i. By genetic endowments

we mean a set of genetic characteristics that directly affect a child’s human capital

through biological channels (e.g., brain function, neuronal development). If human

capital is determined by cognitive and non-cognitive ability, then ei will incorporate

genes that are associated with greater cognitive and non-cognitive ability. PIi denotes

parental inputs devoted to child i. Positive and diminishing returns to parental inputs

require 0 < αp < 1, and positive returns to genetic endowments imply that αe > 0.

With this human capital function, marginal returns to parental inputs are posi-

tively related to genetic endowments. That is, endowments and parental inputs are

complements in the production of human capital. The complementarity between

parental inputs and children’s endowments is important in our context because it

introduces a trade-off between efficiency and equality in parental investment deci-

sions. While some may question this assumption at early ages of childhood, there

is strong empirical evidence of complementarities between skills and investments at

later stages of childhood (Cameron and Heckman, 2001; Cunha et al., 2006; Cunha

and Heckman, 2008; Cunha et al., 2010).5 In our analysis we focus on parental invest-

ments in adolescents, for whom skills and parental inputs are likely to be comple-

ments as in (2).6 However, we acknowledge that our results might not be generaliz-

5See Heckman and Mosso (2014) for an extensive review.
6One may argue that parental investments in teenagers depend on endowments (or the skills stock)

in adolescence rather than on genetic endowments (which are fixed at conception). Our conclusions
would be the same if we used endowment indicators measured in adolescence instead of genetic
endowments under the assumption that differences in endowments due to differences in genetic en-
dowments have not been completely eliminated by the time individuals reach adolescence. To our
knowledge, there is no empirical evidence that differences in capability due to disparities in genetic
endowments decrease throughout development stages. On the contrary, one of the best documented
and most replicated findings in behavioral genetics is that the influence of genes on intelligence in-
creases throughout development (Plomin et al., 2016; Houmark et al., 2020).
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able to early parental investments because: (1) there might be no equality-efficiency

trade-off when children are younger, (2) it may be harder for parents to observe the

manifestations of children’s genetic endowments at earlier ages, which may in turn

attenuate their responses to such endowments, and (3) parents might be less or more

inequality averse when they invest in young versus older children.

Finally, the parental budget constraint has the following form:

p1PI1 + p2PI2 = I (3)

, where pi is the cost of parental inputs for child i and I denotes total parental in-

vestments in children.7 Furthermore, following Becker and Tomes (1976), we allow

the cost of parental inputs to differ with children’s initial endowments e, assuming in

addition that pi = p(ei) is not increasing in e and that p(ei) is homogeneous of degree

one.

In Appendix A we solve the utility maximization problem (1) subject to (2) and

(3), which yields the following expression for parental investments in child 1:

log(PI1) = log(I) + G(e1) + F
(

e1

e2

)
(4)

, where G(e1) = −log(p(e1)), and F( e1
e2
) is a function of the parameters of the model

and e1
e2

.

This equation shows that parental inputs in child 1 positively depend on total

parental investments in children, while depending negatively on the price of parental

inputs in child 1 (“the price effect”). Since p1 may be negatively associated with

child 1’s endowment level, parental inputs devoted to child 1 will positively depend

on his/her endowments (holding endowment differences across siblings constant).

Furthermore, (4) indicates that parental inputs in child 1 depend on the relative en-

dowments of child 1 with respect to child 2 ( e1
e2

).

Additionally, it can be shown that the following holds (see Appendix A for the

7Note that both the cost of parental inputs and total investments include monetary and non-
pecuniary costs, such as time.
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derivations):

• ∂log(PI1|e1)

∂
(

e1
e2

) < 0 if and only if ρ < 0

• ∂log(PI1|e1)

∂
(

e1
e2

) > 0 if and only if 0 < ρ < 1

• ∂log(PI1|e1)

∂
(

e1
e2

) = 0 if and only if ρ = 0

Hence, an increase in relative genetic endowments of a child with respect to

his/her sibling’s genetic endowments (holding constant the child’s own absolute level

of endowments) will decrease parental investments in this child if and only if par-

ents are inequality averse, while it will increase parental investments in this child if

and only if parents care more about efficiency than equality. The intuition for this

result is that inequality averse parents will try to compensate for sibling differences

in initial endowments through their investments, while parents who care more about

efficiency will reinforce these differences because higher initial endowments are as-

sociated with higher returns to parental investments.

In Section A.1 of the Appendix we follow Terskaya (2023) and consider a scenario

in which parents cannot completely separate the inputs devoted to each child. That is,

we assume that there is a public good component of parental investments. As shown

in Bharadwaj et al. (2018), this public good component is especially important when

siblings are close in age and also in the case of twins. Consistent with Bharadwaj et al.

(2018) and Terskaya (2023), we show that the effect of parental inequality aversion

is attenuated when there are externalities in parental investments across siblings.

This is because, when the public good dimension is important, parents cannot fully

compensate for the differences between their children.

3 Empirical Strategy

Our goal is to distinguish the two mechanisms considered in the theoretical model

that may induce parents to follow a “reinforcing strategy” (that is, to invest more in
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better-endowed children than in their less well-endowed siblings) versus a “compen-

sating strategy” (that is, to invest more in children with lower relative endowments).

Importantly, when using sibling or twin fixed effects models to compare parental in-

vestments devoted to children with different initial endowments, one can only iden-

tify the composite impact of parental preferences regarding equality versus efficiency

and the price effect.

3.1 Parental Preferences Regarding Equality versus the Price Effect

Our empirical strategy involves identifying the impact on parental investment de-

cisions of children’s relative (with respect to their siblings) educational genetic en-

dowments, while holding children’s own endowments constant (that is, by holding

parental costs of increasing their children’s human capital constant), as in equation

(4). We consider the following empirical specification:

PIi f = β0 + β1(ĝi f − ĝj f ) + β2 ĝi f + β3 ĝp f + X′
i f α + S′

j f δ + F′
f γ + ui f (5)

, where PIi f is a parental investment indicator for child i in family f , ĝi f stands for a

measure of child i’s educational genetic endowment based on i’s DNA, and ĝj f stands

for the same measure of educational genetic endowment for child j, with subscript j

denoting child i’s sibling. The educational genetic endowment of parents in family

f are denoted by ĝp f . Individual-level characteristics of children i and j in family

f are denoted by X′
i f and S′

j f respectively, and F′
f denotes family-level characteristics

(shared by children i and j) that may influence parental investment choices. Note that

(ĝi f − ĝj f ) is our measure of child i’s relative genetic educational endowment, as it is

the difference between i’s endowment and his/her sibling’s endowment.

As we are controlling for child i’s own endowment (ĝi f ), β1 measures the effect

of parental preferences regarding equality in the distribution of children’s human

capital on parental investment decisions. For any given level of child i’s endowment,

β1 < 0 is consistent with parental inequality aversion (ρ < 0), as it indicates that
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parents will invest less (more) in child i if he/she is higher-endowed (lower-endowed)

than his/her sibling j. By contrast, β1 > 0 is consistent with parents valuing efficiency

more than equality (0 > ρ > 1), as it indicates that parents will invest more (less) in

child i if his/her endowment is higher (lower) than that of his/her sibling j. Finally,

β1 = 0 is consistent with parents having neutral preferences regarding equality in the

distribution of their children’s human capital (ρ = 0).

As for β2 in equation (5), this parameter is informative about the price effect. In

particular, β2 > 0 implies that, for any given level of inequality in siblings’ endow-

ments (ĝi f − ĝj f ), parents will invest more in children whose level of endowments

(ĝi f ) is higher because the cost of investing in them is lower.8

3.2 Genetic Lotteries

Our empirical strategy relies on the fact that genetic information from parents is

randomly assigned to children, a phenomenon that is sometimes referred to as genetic

lotteries (Fletcher and Lehrer, 2011). This implies that, conditional on parental genetic

endowments, the genetic endowment of children is random. Given that we control

for parental genetic endowments in model (5), our identification relies on random

variation of ĝi f and ĝj f . However, we do not give a causal interpretation to the effect

of parental genetic endowments estimated in equation (5) because parental genetic

endowments might be correlated with parental characteristics, as well as with genetic

endowments of earlier ancestors, which may also influence parental behavior.

3.3 Endogenous Fertility

An additional issue that studies analysing parental responses to children’s endow-

ment differences must confront is the potential endogeneity of fertility. If fertility

8Equation (5) can be rewritten as equations (4) or (5) in Behrman et al. (1994):

PIi f = β0 + β1(gi f − ĝj f ) + β2 ĝi f + β3 ĝp f + X′
i f α + S′

j f δ + F′
f γ + ui f =

β0 + (β1 + β2)ĝi f − β1 ĝj f + β3 ĝp f + X′
i f α + S′

j f δ + F′
f γ + ui f

However, in this case, the coefficient for ĝi f measures the combination of the price effect and the effect
of parental preferences for equality versus efficiency.
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decisions were exogenously fixed, one could compare the parental investments in

equally endowed children with differently endowed siblings regardless of birth order.

However, parental decisions to have another child may depend on the endowments

of previously born children. While this is not an issue when analyzing twins, for

whom we estimate equation (5) as it is, it may be a problem for analyses based on

non-twin siblings.

Ejrnæs and Pörtner (2004) provide a theoretical model of intra-household resource

allocation where fertility decisions are treated as endogenous and parental invest-

ments and fertility decisions depend on children’s genetic endowments. Importantly,

they show that, if parents care more about efficiency (or have strong preferences for

highly endowed children), parents who have a highly endowed child will stop hav-

ing children earlier than parents who have a less well-endowed child. This however

does not hold for inequality-averse parents.9 In Table 1 we illustrate that highly-

endowed children with highly-endowed older siblings are born to parents who are

indifferent towards their children’s endowments (indifferent parents, for short). In

contrast, highly-endowed children with less well-endowed older siblings could have

been born both to parents with strong preferences for highly-endowed children or

to indifferent parents. Therefore, the comparison of children with the same absolute

level of endowments but who differ in terms of their older sibling’s endowments is

complicated by the fact that these children are born to parents with systematically

different preferences regarding the endowments of their offspring.

On the bright side, Table 1 also illustrates that children with the same absolute

endowment levels but who differ in terms of their younger sibling’s endowments are

born to parents with similar preferences. As a consequence, one can circumvent the

endogenous fertility issues that affect the analysis of non-twin siblings by focusing

on the genetic endowments of older children with respect to their younger siblings.

We estimate equation (5) in the pooled sample of twins and non-twins, as well as

9Ejrnæs and Pörtner (2004) test their model using longitudinal data from the Philippines to examine
the effect of birth order on the number of hours in school and completed education. Consistently with
the predictions of their model, they find that children with a higher birth order have an advantage
over siblings with a lower birth order.
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for twins and non-twins separately. As we discuss in Section 2 and in Appendix A.1,

it may be harder for parents of twins to compensate or reinforce differences between

them since the public good component of parental investments is more important for

twins than for non-twins (Bharadwaj et al., 2018). This may imply that β̂1 is likely

lower for twins than for non-twins.

4 Data and Descriptive Statistics

4.1 The Add Health Dataset

We use data from the National Longitudinal Study of Adolescent to Adult Health

(Add Health in what follows), a nationally representative longitudinal survey of U.S.

7th to 12th graders during the school year 1994/95 drawn from a stratified sample

of 80 high schools and 52 middle schools. Within each school and grade, a random

sample of approximately 17 males and 17 females, as well as an oversample of siblings

and specific minorities were selected for interviews (the so-called in-home sample).

The interviews were conducted in 1994/95 (Wave I, ages 12-20 years), 1996 (Wave

II), 2001/02 (Wave III), 2008 (Wave IV), and 2016-18 (Wave V). Information on all our

variables of interest was collected in Wave I except for the genetic information, as

genotyping was performed in Wave IV, and completed years of education measured

in Wave IV.

In Wave IV, respondents were asked for consent for the collection of saliva sam-

ples. Approximately 80% of respondents consented to long-term archiving of their

samples and were eligible for genotyping. After quality control procedures, genetic

information was available for approximately 65% of Wave IV respondents and poly-

genic indexes were constructed. We provide a detailed description of genotyping

procedure and genetic information in Add Health in Appendix C.10

Another crucial advantage of Add Health for our purposes is that its in-home sur-

10For more information, see the Add Health documentation available at: https://addhealth.cpc.
unc.edu/wp-content/uploads/docs/user_guides/SSGAC-PGS_UsersGuide.pdf.
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vey collects information on respondents’ relationship with their parents, which al-

lows us to construct indicators of parental investments. Importantly, the Add Health

in-home and parental questionnaires also provide detailed information on individual

and family background characteristics.

4.2 Genome-Wide Data to Measure Genetic Endowments

There are several ways to study the impact of genetic endowments on outcomes.

Early studies estimated the genetic components of different traits by comparing the

correlation of outcomes between dizygotic and monozygotic twin pairs (Taubman,

1976; Behrman et al., 1994; Savelyev et al., 2022). These studies showed that many

socioeconomic outcomes have a strong genetic component. The main advantage of

this methodology is that it does not require genetic data. However, it can only be

used to infer which proportion of the outcome’s variance is explained by the genetic

component, but it cannot quantify genetic endowments.

As DNA sequencing has become cheaper, genome-wide association studies (GWAS)

have been implemented to study the genetic determinants of different traits (e.g, de-

pression, educational attainment, body mass, cognition). The human genome consists

of a large set of DNA molecules, and in most locations in the genome (approximately

99%) there is no variation among humans. However, in some locations there is some

variation and these genetic variants are used in GWAS to study the impact of genes

on different outcomes.

GWAS analyse associations between an outcome of interest (a phenotype) and

hundreds of thousands of genetic variants through a data-mining approach. There-

fore, a GWAS requires large samples of genotyped individuals with available phe-

notypic information in order to provide precise estimates of the genetic effects. The

most powerful GWAS are usually conducted for easily available outcomes, such as

educational attainment or body mass index, while less available outcomes, such as

cognitive performance, are usually analyzed in smaller GWAS, and therefore the ge-
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netic effects on such outcomes are estimated with less precision.11

The effects of genetic variants on a phenotype estimated in a GWAS can be used as

weights for construction of a summary index that measures individuals’ genetic pre-

disposition to this phenotype. These summary indexes are called polygenic indexes.

In our analysis we use an educational attainment polygenic index as a measure of

educational genetic endowments. In the sensitivity analysis, we also use a cognitive

performance polygenic index.

To date, all GWAS of educational attainment rely on samples of individuals of

European descent, so polygenic indexes are likely to be much less predictive and

subject to more measurement error for other groups (Lee et al., 2018). Therefore, we

conduct our analysis on a sample of European descent, as done in most previous

studies using educational polygenic indexes.

4.2.1 Imputation of Parental Genotypes

Our strategy for identifying β1 and β2 in equation (5) relies on random assignment

of genes across sibling and on random assignment of siblings’ genes conditional on

parental genes, respectively. However, there is no genetic information for parents in

Add Health. To circumvent this issue, we rely on Mendelian imputation of parental

genotypes, a technique proposed by Young et al. (2020, 2022). This method allows

one to impute missing parental genotypes using available information on children’s

genotypes and the fact that, at each genome location, children inherit one molecule

from each parent at random.12

Specifically, the method uses information on whether siblings inherited the same

or different genetic variants from their parents. For instance, suppose that sibling

1 has the ++ variant at genome location l and sibling 2 has the −− variant at the

same location. Hence, sibling 1 has inherited a + from the mother and a + from

the father, and sibling 2 has inherited a − from the mother and a − from the father,

11We provide additional details about GWAS and how genetic information is coded in Appendix B.
12For instance, suppose that the mother has the ++ variant and the father has the +− at genome

location l. Then, the child will inherit a + from the mother, and a + or a − from the father with a 50%
probability, so the child’s variant will be ++ or +−.

16



which implies that the mother and the father have the −+ variant at location l. When

siblings’ genetic variants are the same, it is not possible to be sure of which variants

the parents have, so in this case the method uses the frequency with which a certain

genetic variant occurs in the population.

By comparing imputed and observed parental genotypes, Young et al. (2020, 2022)

demonstrate that this imputation method provides approximately unbiased estimates

of parental genotypes. Additionally, Young et al. (2020, 2022) show that controlling

for the imputed parental polygenic index enables unbiased and consistent estimation

of the coefficient of the child’s polygenic index. We provide additional details about

the imputation of parental genetic data in Appendix D.

4.2.2 Polygenic Indexes

Polygenic indexes for Add Health are constructed as a standardized weighted sum

of approximately 1.2 million genetic variants:

ĝti =

L

∑
l=1

xilγ̂tl

sd

(
L

∑
l=1

xilγ̂tl

) (6)

, where xil is genetic variant l of individual i (measured with respect to a reference

genotype and demeaned), γ̂tl is a weight for genetic variant l associated with trait t

(e.g., educational attainment or cognitive performance),13 and sd stands for standard

deviation, so that polygenic indexes are standardized and have zero mean given that

each xil is demeaned ( ¯̂gti = 0 and sd(ĝti) = 1).

Polygenic weights γ̂tl are transformations of the effects of genetic variants on

trait t estimated in a GWAS, such that γ̂tl minimizes E
[
(tj −

L

∑
l=1

xjlγ̂tl)
2
]
. Therefore,

a polygenic index of trait t is the best linear predictor of t given genetic variants

13For example, suppose that i has the ++ variant at location l and + is a reference molecule at this
location, so i has two reference molecules at location l. Then, xil = 2 − x̄l . That is, xil is measured
as the demeaned number of reference molecules that the individual has at genome location l. See
Appendix B for further details on how genetic markers are coded.
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{x1, ...xL}.14

In our analysis, we use polygenic indexes for Add Health respondents provided

to Add Health by the Polygenic Index Repository (Becker et al., 2021).15 Specifically,

the Polygenic Index Repository uses a consistent methodology to construct poly-

genic indexes for 47 phenotypes in 11 datasets, including Add Health. The scores in

the Repository are constructed using recent GWAS, as well as the UK Biobank and

23andMe GWAS. The Repository constructs weights for educational attainment using

Lee et al. (2018) and 23andMe GWAS, and for cognitive performance using Trampush

et al. (2017) and the UK Biobank GWAS. We use weights from the Repository to con-

struct parental educational and cognitive performance polygenic indexes, given that

parental polygenic indexes are not provided by Add Health.16 We provide further

details on the construction of polygenic indexes in Appendix C.

4.2.3 Polygenic Indexes as Measures of Educational Genetic Endowments

We now discuss how an educational polygenic index should be interpreted in our

context. Our objective is to test how parents react to sibling differences in educational

genetic endowments, and by educational genetic endowments we mean genetically

influenced initial ability for education. Hence, our analysis relies on the following

assumption:

Assumption 1 Educational genetic endowments are well proxied by the educational poly-

genic index.

Genes affect certain cognitive and psychological characteristics, which in turn

comprise initial ability. However, the skills that matter for school achievement are

14Some genetic variants may have a positive effect on trait t and others may have a negative effect,
so the weights may take positive or negative values.

15See the Add Health documentation (https://cdr.lib.unc.edu/downloads/00000772p) for de-
tails about the construction of polygenic indexes in this dataset.

16The full GWAS summary statistics for the 23andMe discovery data set has been made available
through 23andMe under an agreement with 23andMe that protects the privacy of the 23andMe par-
ticipants. Please visit https://research.23andme.com/collaborate/#dataset-access/ for more in-
formation and to apply to access the data.
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determined by both initial ability and subsequent investments that may in turn in-

teract with initial ability. Therefore, the genetic component of educational attainment

may capture the effects of initial genetic ability and the indirect effects of genes on

education driven by environmental responses to the genetic ability (e.g., parental or

teachers’ inputs).

In Appendix E we consider a model in which educational attainment is a function

of educational genetic ability and of different inputs (including parental inputs). In

turn, inputs are endogenously chosen and may depend on genetic characteristics that

can differ from the educational genetic ability that directly affects educational attain-

ment. First, we show that: (i) if inputs are only affected by educational genetic ability,

and (ii) if there is not full compensation of genetic ability, estimators of β1 and β2

in equation (5) will provide unbiased estimates of the effects of educational genetic

ability on parental investments. On the other hand, if genetic characteristics that af-

fect inputs and educational genetic ability differ, the results provided in Appendix E

indicate that compensatory inputs (parental and non-parental) may lead to underes-

timating the effect of genetic ability on parental investments, while reinforcing inputs

may lead to overestimating this effect. However, even in the worst-case scenarios

that we consider, the estimated effect will account for 65% − 120% of the true effect.

The sign of the effect will be estimated correctly if there is not full compensation of

genetic ability.

Full compensation would imply that the educational polygenic index has no posi-

tive association with genetic variants that affect cognitive function and brain-development

processes. However, this is unlikely as it would be at odds with the results from the

genetics literature according to which the educational polygenic index is positively

associated with brain volume, white-matter tract integrity, and neuronal development

or function (Rietveld et al., 2013; Elliott et al., 2019; Demange et al., 2021).

Another issue is that educational polygenic indexes only capture part of the ge-

netic component of educational attainment. First, polygenic indexes are linear func-

tions of genetic variants, so they ignore potential non-linear effects of genes. While
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non-additive genetic factors may be potentially important, abundant theory and ev-

idence from quantitative genetics indicates that most of the genetic variance in the

analysis of population data can be captured by the additive genetic factors (Falconer

and Mackay, 1996; Hill et al., 2008; Okbay et al., 2022; Palmer et al., 2021; Zhu et al.,

2015).

Second, polygenic indexes are not based on all genetic variants but only on mea-

sured variants. In Appendix F we show that if measured genetic variants capture

only half of the genetic component of educational attainment, as it is estimated by

Cheesman et al. (2017), then our estimates will be deflated by a factor of 1/
√

2 ≈ 0.71,

assuming that unmeasured genetic variants have the same average effect sizes as

measured genetic variants. The third challenge is related to the fact that polygenic

weights γ̂l are estimated in cross-sectional GWAS that do not control for parental

genes, while the relevant polygenic index should be constructed from a GWAS that

controls for parental genotypes. We discuss in Appendix E that this may deflate the

estimated genetic effects by a factor of 0.7-0.8. In sum, the limitations listed above

imply that the effect sizes that we estimate are likely to be conservative and should

be interpreted as lower bounds of the true effects of individuals’ genetic propensity

for education.

An additional challenge we address is related to the fact that polygenic weights

γ̂tl from equation (6) are not estimated in the population but in a GWAS sample. This

implies that polygenic indexes are subject to measurement error. The variance of the

measurement error is generally larger in polygenic scores based on small GWAS, so

it is recommended to rely on large GWAS. Hence, we favor the educational polygenic

index, which relies on a GWAS of approximately 1 million individuals, over the

cognitive performance polygenic index, which relies on a four times smaller GWAS.

Becker et al. (2021) show that when there is measurement error in a polygenic

index, its estimated effects will be attenuated towards zero. They also show that

the variance of the measurement error can be inferred from the difference between

the proportion of the variance of an outcome of interest (e.g., educational attainment)
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explained by the set of genetic variants (referred to as SNP heritability and denoted by

h2
SNP) and the proportion of the variance of the outcome explained by the polygenic

index (R2 from the regression of the outcome on its polygenic index). Using estimates

of R2 and h2
SNP, Becker et al. (2021) provide a measurement-error correction method

for regressions that include a single polygenic index, assuming that the measurement

error is uncorrelated with genetic variants and non-genetic variables.

In Appendix F, we follow Becker et al. (2021) and provide a measurement-error

correction method to adjust the estimated genetic effects in models that include sev-

eral polygenic indexes (e.g., individuals’, siblings’, and parental polygenic indexes).

This correction method requires estimates of h2
SNP, R2, and of parents-offspring and

siblings genetic correlations, which we obtain in Appendix F.7. We use this method

to correct for measurement error in our analysis.17

In Appendix F.5.1, we show that the standard errors are likely to be inflated due

to measurement error, as it adds two additional sources of variation to the residual.

The first source is due to the fact that the coefficients are biased, and the second is

due to the additional variance introduced by the presence of measurement error in

the genetic regressors. Therefore, when we discuss the statistical significance of our

results, we note that our measurement-error-corrected standard errors are conserva-

tive, which may prevent us from concluding that some effects achieve standard levels

of statistical significance if they are small.

4.3 Parental Investments

We use several alternative measures of parental investments based on questions about

teenagers’ relationship with their parents included in the in-home questionnaire ad-

ministered in Wave I of Add Health. Adolescents were asked similar questions about

their relationship with the mother and the father. In particular, we consider the fol-

lowing binary outcomes: i) In the past 4 weeks went to a movie, play, museum, concert,

or sports event with the mother (father); ii) In the past 4 weeks talked about school work or

17In Table H.10 of the Appendix, we provide sensitivity checks based on different estimates of h2
SNP.
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grades with the mother (father); iii) In the past 4 weeks worked on a project for school with the

mother (father); iv) In the past 4 weeks talked about other things were doing in school with

the mother (father); and v) On how many of the past 7 days was at least one of your parents

in the room with you while you ate your evening meal?.18

Using these variables, we construct three indicators: a parental investment index

based on questions involving both parents, a maternal investment index based on

questions involving the mother, and a paternal investment index based on questions

involving the father. If only one parent is present in the household, the parental in-

vestment index only includes information regarding the teenagers’ relationship with

him/her. To construct summary indexes, we follow Kling et al. (2007) and compute

each summary index variable Y∗ as the unweighted average of standardized compo-

nents:

Y∗ = ∑k Y∗
k

K , where Y∗
k = Yk−Ȳk

sd(Yk)

, where Yk is the kth component of the index, Ȳk denotes its mean and sd(Yk) is its

standard deviation.

4.4 Estimation Sample Description

For our analysis we use the Add Health Sibling Pairs sample with available genetic

data. We start with 3,139 sibling pairs. Next, we restrict this sample to 1092 pairs

with available genetic information. Then, we eliminate non-European ancestry indi-

viduals, which leaves us with 619 sibling pairs. We then eliminate 15 pairs because

the firstborn sibling or both twins had no information on parental investments. This

restriction leaves us with an estimation sample of 604 sibling pairs (412 non-twin

pairs and 192 twin pairs) from 557 families.

In our baseline specification we control for children’s age, age-squared, sibling

differences in age (only in the non-twin subsample), a female dummy, and a female

18Questions (i) and (v) are comparable to the questions How often child goes to musical shows and
Eats with mom/dad used to measure parental investments in Cunha et al. (2010). Importantly, these
measures have a high signal to noise ratio as a parental investment (see Table IIB Cunha et al. 2010).
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sibling dummy. We also assess the sensitivity of our results to the inclusion of ad-

ditional controls. Specifically, in the extended list of controls we include a parental

socio-economic status (SES) index (see Appendix G), a rural area indicator, and an

indicator that both parents live in the household. Table H.1 in Appendix H displays

summary statistics for the control variables. Figure H.1 of Appendix H plots kernel-

smoothed densities of the educational polygenic indexes of individuals, siblings, and

parents in our estimation sample. The distributions of the polygenic indexes are

approximately normal.

Table H.2 in Appendix H describes the main outcomes measuring parental invest-

ments as well as their components. Our identification strategy requires that there is

within-family variation in parental investments. We report across- and within-family

standard deviations of parental investment indexes in Table H.3 of the Appendix.19

Within-family standard deviations constitute 58%-59% of the across-family standard

deviations. Interestingly, this share is lower for twins than for non-twins (49%-53%

vs. 61%-62%), which is consistent with parents of twins being more likely to equally

invest in their children, possibly because the public good component of parental in-

vestments is particularly important for children of the same age (see Section 2).

In Table H.4 we show that our parental investment indexes are positively as-

sociated with children’s educational attainment measured in Wave IV. Specifically,

a one standard deviation increase in the parental investment index is associated

with an increase by 0.175 standard deviations of years of education (p − value <

0.001). This association remains positive (0.112) and statistically distinguishable from

zero (p − value < 0.001) after we control for individual and family characteris-

tics. Similarly, one standard deviation increase in the maternal and paternal invest-

ment indexes is associated with an increase by 0.106 (p − value = 0.003) and 0.133

(p − value = 0.001) standard deviations of years of education, respectively, after con-

trolling for individual and family characteristics.

Our analysis relies on twins and firstborn children who have siblings with valid

19We compute within-family standard deviations by removing family fixed effects from the outcome
variables.
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genetic data. Moreover, because of the relatively low predictive power of polygenic

indexes for non-European ancestry groups, our analysis focuses on European ances-

try individuals. In Table H.5 of the Appendix we compare our estimation sample to:

(1) the Add Health representative sample (respondents with valid Wave I grand sam-

ple weights); and (2) a sample of only white respondents (with valid Wave I grand

sample weights). Our estimation sample only includes firstborns or twins who are

about one year older than individuals in the full sample of white respondents. Apart

from age, the characteristics of our estimation sample and the full sample of white

respondents are similar.

As for the comparison with the representative sample that includes other ancestry

groups, Table H.5 of the Appendix shows that individuals in our estimation sample

are more likely to live in rural areas and to live in two-parent households. However,

these differences become negligible when the difference in the share of white indi-

viduals is accounted for. The average parental socioeconomic index and the parental

investment indexes are not statistically distinguishable between our estimation sam-

ple and the full sample that includes non-European ancestry individuals.

Next, we show that the educational polygenic index is indeed associated with

educational attainment and different measures of educational achievement.20 To do

so, we regress each measure of achievement on the educational polygenic index with

and without controls while also applying the measurement-error correction method

described in Appendix F. Panel A of Table 2 reports the effects (uncorrected and

measurement-error-corrected) of the polygenic index on educational attainment (stan-

dardized to have mean 0 and standard deviation 1) in our pooled sample of firstborns

and twins. Column (1) shows that the educational polygenic index explains 14.9% of

the observed variance in educational attainment, and one standard deviation increase

in the polygenic index increases educational attainment by 0.386 (SE = 0.041) stan-

dard deviations.21 Column (2) reports the same effect after controlling for the parental

20Educational attainment is measured using the question "What is the highest level of education that
you have achieved to date?" addressed to Wave IV (age: 25-33) respondents.

21Note that the Repository educational polygenic index outperforms the explanatory power of edu-
cational polygenic indexes based on earlier GWAS by Okbay et al. (2016) and Rietveld et al. (2013) that
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educational polygenic index, age, age squared, and sex. When these controls are in-

cluded, the effect of the educational polygenic index amounts to 0.191 (SE = 0.074)

standard deviations, and a standard deviation increase in the parental educational

polygenic index is associated with 0.234 (SE = 0.073) standard deviations increase

in educational attainment. Finally, in column (3) we include the same controls as in

column (2) and we correct for measurement error, finding that a standard deviation

increase in the educational polygenic index increases educational attainment by 0.369

(SE = 0.076) standard deviations.

Panels B and C of Table 2 show similar patterns when analysing other indicators

related to educational achievement, such as Peabody Picture Vocabulary Test (PPVT)

scores and grade point averages (GPA). While the value of the polygenic index is

known to analysts, it is unlikely to be known by parents. Instead, parents at least

partially observe some of the traits related to their children’s polygenic indexes, and

therefore their investment decisions can respond to these traits. Hence, it is important

to ensure that the polygenic index is strongly associated not only with completed

educational attainment, but also with earlier manifestations of ability, such as PPVT

scores and GPA.

Since variation in children’s polygenic indexes conditional on parental polygenic

indexes resembles a lottery, one would expect sibling differences in polygenic indexes

to be uncorrelated with individual and family characteristics when the parental poly-

genic index is controlled for. To check that this is indeed the case, we regress each

of our control variables on sibling differences in the educational polygenic index, as

well as on parental and children’s own polygenic indexes. The results are reported in

Table H.6 of the Appendix. In line with the idea that genetic variation across siblings

is as good as random, sibling differences in the educational polygenic index are not

significantly associated with any control variable.

relied on smaller samples.
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5 Main Results

Our main results for the parental investments index are displayed in Table 3. The

table reports the measurement-error-corrected coefficients from equation (5).22

Columns (1-3) show estimates of our main coefficients of interest, β̂1 and β̂2, ob-

tained from estimating equation (5) in the pooled sample of twins and non-twins

without controls (column 1), with baseline controls (column 2), and with additional

controls (column 3). Columns (4-6) and (7-9) are based on the same specifications and

show the estimated effects for non-twins and twins separately. Since adding controls

barely alters coefficient estimates, we mainly focus our discussion on the results from

columns (2), (5), and (8) that include baseline controls.

The baseline estimates in the pooled sample (column 2 of Table 3) indicate that

parents, on average, display inequality aversion because the effect of sibling differ-

ences in the educational polygenic index is always negative and statistically distin-

guishable from zero at standard levels of testing. That is, after conditioning on par-

ents’ and children’s own educational polygenic indexes, we find that parents invest

less in children who are better endowed than their siblings. In particular, if sibling

differences in the educational polygenic index increase by one standard deviation,

the parental investment index decreases by 0.233 (SE = 0.081) standard deviations.

Column 5 of Table 3 shows that the estimated effect of sibling differences in the

educational polygenic index for non-twins is also negative and statistically distin-

guishable from zero (p − value = 0.007), which is again consistent with parental

inequality aversion. Specifically, in the sample of non-twins, a standard deviation in-

crease in sibling differences in the educational polygenic index decreases the parental

investment index by 0.270 (SE = 0.100) standard deviations.

This finding is very much in contrast with our evidence for twins (column 8 of

Table 3), as we find that the effect of differences in the educational polygenic index

between twins is small and imprecise (-0.043 with SE = 0.123). One potential ex-

planation for our contrasting results for parents of twins and non-twin siblings may

22We report the uncorrected estimates in Table H.7 of the Appendix.
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be that it can be difficult for the former to invest differently across their children be-

cause they are exactly the same age. Intuitively, if a parent helps out with homework

or plays with one twin, it is difficult to prevent the other twin from participating

to some extent. This implies that, even if parents of twins were inequality averse,

they may be unable to invest differently across their children.23 In the extension of

our theoretical model that incorporates externalities across siblings or a public good

component of parental investments, we show that, when this component is strong,

the effect of parental inequality aversion is smaller than when parental investments

are perfectly separable (see Appendix A.1). An alternative explanation is that the mis-

taken belief potentially held by parents that non-identical twins have identical genetic

endowments may make them less prone to perceiving, and therefore responding to

the manifestation of differences in their twins’ genetic propensity for education.

As for the price effect, the estimated effects of children’s own educational poly-

genic index reported in Table 3 are positive and sizeable (0.201 with SE = 0.077). A

positive price effect implies that, if it is large enough, even inequality averse parents

may choose to follow a reinforcing or a neutral strategy. In fact, the sum of β1 and β2

is not statistically distinguishable from zero, which suggests that the price effect and

the parental inequality aversion mechanisms offset each other in our sample.

Finally, in Table H.8 in the Appendix we investigate whether there is heterogeneity

in the effect of sibling differences in the educational polygenic index on parental

investments depending on the sex of the parent whose investment decisions are being

analysed, as well as on the children’s sex.

In order to analyse whether mothers and fathers respond differently to sibling

differences in their genetic propensity for education, we estimate equation (5) using

as outcomes the investment indexes that are solely based on maternal and paternal

investments. The results of this analysis are shown in columns (1) and (2) of Table

H.8 in the Appendix. We cannot reject that sibling differences in the polygenic index

have the same effect on maternal and paternal investment decisions.

23This is in line with Bharadwaj et al. (2018), who empirically estimate that the public good compo-
nent of parental investments is more important for children who are very close in age.
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Several studies document that parental investments vary depending on children’s

sex (Lundberg, 2005; Baker and Milligan, 2016). However, the evidence is mixed

and does not necessarily indicate that parents favor boys over girls. In columns (3)

and (4), we separately estimate the effects of sibling differences in the educational

polygenic index on parental investment decisions for boys and girls. The estimated

effects are similar for the two groups, and we cannot reject the null hypothesis that

parental responses to sibling differences in the educational polygenic index do not

vary by children’s sex. We also find that the effect of children’s own educational

polygenic index on parental investments is only statistically distinguishable from zero

for girls, but we cannot rule out that the effect of children’s own genetic propensity

for education is the same for boys and girls.

6 Robustness Checks

6.1 Sensitivity Tests

We now conduct four sets of sensitivity tests. First, we check whether our results

are robust to using an alternative measure of initial ability by re-estimating equation

(5) using the cognitive performance polygenic index as a measure of genetic endow-

ments. The measurement-error-corrected estimated effects are reported in Panel A

of Table H.9 of the Appendix. In line with our main findings, the effect of sibling

differences in the cognitive performance polygenic index is negative and similar in

magnitude to the effect of sibling differences in the educational polygenic index.

Moreover, the effect is statistically distinguishable from zero only for non-twin sib-

lings, while the effect is small in magnitude and not distinguishable from zero for

twins. Hence, our main results persist when using the cognitive performance rather

than the educational polygenic index as a measure of genetic endowments.

A second potential concern is that there is no within-family variation in the ed-

ucational polygenic index in families with monozygotic twins. Our identification of

the effect of sibling differences in the educational polygenic index is based on the
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comparison of individuals who have the same value of the polygenic index but who

differ in terms of their siblings’ polygenic index (since we control for individuals’ own

polygenic index). Therefore, in the case of monozygotic twins, we identify the effect

of interest by comparing parental investments in a monozygotic twin with parental

investments in some other child who has the same value of the polygenic index as

the monozygotic twin but whose sibling has a different value of the polygenic index.

If we restricted the sample only to monozygotic twins, identification would not be

possible because monozygotic twins have identical DNA and therefore there would

be no variation in sibling differences in the polygenic index. However, our analysis

for twins also includes dizygotic twins. It is true, however, that the variance of sib-

ling differences in the polygenic index is smaller in the sample of twins than in the

sample of non-twins. Therefore, the effect for twins is likely to be estimated with

lower precision than the effect for non-twins. Hence, in Panel B of Table H.9 we ex-

clude monozygotic twins from the analysis. Panel B of Table H.9 shows that, in the

subsample of dizygotic twins only, the effect of sibling differences in the educational

polygenic index is close to zero and not statistically distinguishable from zero, which

is consistent with our baseline results for twins reported in column 8 of Table 3.

Third, since genetic variants may be associated with the outcome because of pop-

ulation stratification —the presence of systematic differences in genetic variation be-

tween subpopulations—, the effect of the educational polygenic index may reflect

these differences. This should not be an issue when one estimates the effect of chil-

dren’s educational polygenic index while controlling for their parents’ educational

polygenic index because the parental polygenic index captures the effect of popula-

tion stratification. At any rate, in Panel C of Table H.9 we include the 20 principal

components of the full genetic relatedness matrix as controls, which is a standard

practice to control for population stratification (Price et al., 2006; Benjamin et al.,

2012). The estimated effects of sibling differences in the educational polygenic index

remain very similar to the baseline estimates reported in Table 3.

Fourth, our main estimation sample is limited to older siblings and twins in order
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to circumvent the issue that fertility decisions are endogenous (see Section 3.3). In

Panel D of Table H.9 we report the estimated effects in an unrestricted sample that

includes both older and younger siblings, as well as twins. The estimated effect of

sibling differences in the educational polygenic index is negative but less precise in

the pooled sample (p − value = 0.051) and in the sample of non-twins (p − value =

0.055), and small and not statistically distinguishable from zero in the sample of twins

(p − value = 0.981).

Finally, in Table H.10 of the Appendix we analyse the sensitivity of the estimated

effects of sibling differences in the educational polygenic index and the cognitive

performance polygenic index to different assumptions about the proportion of the

variance of educational attainment and cognitive performance explained by genetic

variants (h2
SNP) used in the measurement-error correction (see Appendix F). Columns

(1)-(4) of Table H.10 show that, depending on the assumption about h2
SNP, the esti-

mated effect of a standard deviation increase of sibling differences in the educational

polygenic index varies from −0.273 to −0.194. Columns (5)-(7) of Table H.10 show

that the estimated effect of a standard deviation increase in sibling differences in the

cognitive performance polygenic index varies from −0.280 to −0.186. All the effects

are economically meaningful and consistent with the presence of parental inequality

aversion.

6.2 Falsification Tests

In order to check that our results are not driven by chance, we run placebo tests. To

obtain placebo versions of children’s educational polygenic index, sibling differences

in the polygenic index and parents’ polygenic index, we replace their actual values

with those from randomly drawn families from our sample. We then estimate equa-

tion (5) using these placebo values and including baseline covariates. As in our main

analysis, we account for measurement error in the educational polygenic index in the

placebo regressions. We repeat this procedure 1,000 times in order to obtain distribu-

tions of the estimated coefficients of placebo variables. We find that, in line with our
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results being genuine, the placebo effects are statistically significant at the 5% level in

approximately 5% of our placebo regressions, which is what we expect to obtain by

chance. Figure H.2 in the Appendix summarizes the results of these estimations by

displaying the placebo t − value distributions of the tests β1 = 0, β2 = 0, and β3 = 0.

6.2.1 “Too Early” Parental Responses

Parents cannot possibly observe differences between children at a very early age.

Therefore, another placebo test of our main result consists in checking whether sibling

differences in the educational polygenic index impact “too soon after birth” parental

investment indicators, such as breastfeeding. We use a retrospective question from

the Add Health parental questionnaire that asked mothers how long each of their

children participating in the in-home interview was breastfed. We define an indica-

tor variable which takes the value zero if the mother’s answer is “(He/ she) was not

breastfed” and one if she reports that the child was breastfed to some extent. Then

we estimate equation (5) using this variable as an outcome and including the base-

line controls listed in Table H.1. As expected, the effect of sibling differences in the

polygenic index on the probability of having been breastfed are very close to zero

(β̂1 = 0.001 and SE(β̂1) = 0.085).

7 Conclusions

We take advantage of recent advances in behavioral genetics to revisit a longstanding

question in economics, namely: how do parental investment decisions respond to

adolescents’ endowments and to endowment differences between siblings? In our es-

timation we rely on random variation of children’s genotypes conditional on parental

genotypes. We provide new evidence that American parents of European-ancestry

non-twin adolescents display inequality aversion. In particular, we show that parents

invest more (less) in children if their genetic predisposition for educational attain-

ment is lower (higher) than that of their siblings controlling for the absolute level
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of parents’ and children’s genetic propensity for education. Hence, parental invest-

ments during adolescence may be able to reduce the effect of inequalities in genetic

endowments. We also find evidence that the price effect is positive as parents invest

more in adolescents with higher genetic propensity for education holding genetic dif-

ferences among siblings constant, as well as parental genetic endowments and other

characteristics. Interestingly, and in contrast to our findings for parents of non-twin

adolescents, we find no evidence that American parents of European-ancestry twins

respond to differences in their twins’ genetic endowments.

The limitation of using genetic data —and more specifically polygenic indexes—

in our analysis is that they provide an imperfect measure of educational genetic

propensity for education. First, polygenic indexes are linear combinations of genetic

variants, so they ignore potential non-linear effects. Second, polygenic indexes are not

based on all genetic variants but only on measured genetic variants. Third, polygenic

indexes are computed using estimated weights, which implies that they are subject to

measurement error. We take measurement error issues into consideration in our anal-

ysis, and we show that our estimated effects are likely to be deflated and should be

interpreted as lower bounds of the true effects. Another limitation is that our analy-

sis is conducted for individuals from European ancestries because polygenic indexes

are poorer measures of educational genetic endowments for other ancestries. Further

research is needed to obtain polygenic indexes for non-European ancestries. Hence,

we cannot claim our results are generalizable to non-European ancestry individuals.

Our findings are important for evaluating the role of the family in shaping in-

equality as well as the effectiveness of compensatory policies. American parents of

European-ancestry teenagers in our sample on average display inequality aversion

in their investment decisions. Hence, well-targeted interventions that help lower-

endowed adolescents and increase their endowments may in turn induce their in-

equality averse parents to invest less in their “compensated” children and act less as

equalizing agents, attenuating the impact of compensatory programs.

Suppose instead that parents followed a reinforcing strategy. If the price effect
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is positive because it is less costly for parents to invest in highly endowed children

than in their less well-endowed siblings, a reinforcing strategy may stem from in-

equality averse parents whose degree of inequality aversion could not offset the price

effect, from neutral parents, or from parents who favor efficiency over equality. Well-

targeted compensatory policies would be most effective in the latter case, as inter-

ventions that help lower-endowed adolescents will in turn induce parents who favor

efficiency to invest more in them. The opposite would happen if parents were in-

equality averse, and no parental behavioral response would take place if parents

displayed neutral preferences.

Taken as a whole, our evidence suggests that further research is needed to look

into the black box of intra-household dynamics and the nature of parental invest-

ments for different types of families. As for the distinctive features of post-natal

parental investments in twins versus singleton siblings, when incorporating exter-

nalities across siblings or a public good component of parental investments into our

theoretical model, we show that, if this component is strong, the effect of parental

inequality aversion is smaller than when parental investments are perfectly separa-

ble. Our findings that parents of singleton siblings display inequality aversion and

no evidence for this effect for parents of twins are in line with this notion.

Finally, our results highlight the idea that early life conditions not only affect later-

life outcomes directly, but also indirectly through intra-household allocation effects.

This idea is not new (e.g., Cunha et al. 2010 and Yi et al. 2015), but our paper is the

first to provide direct evidence that sibling differences in educational genetic endow-

ments shape parental investment decisions. In contrast, previous studies that rely on

genetic data mainly focus on identifying the overall effect of children’s own genetic

endowments on parental investments, while ignoring the role of siblings’ genetic en-

dowments. For example, Breinholt and Conley (2020) and Houmark et al. (2020) find

that parents invest more in young children with higher initial genetic endowments,

which contrasts with our results that the overall effect —that is, the effect that com-

bines the price and the inequality aversion effects— of children’s genetic propensity

33



for education on parental investments by the time children are adolescents is not

statistically distinguishable from zero (controlling for parental and siblings’ genetic

propensity for education). One potential explanation for this difference is that par-

ents might not respond the same way at different stages of childhood and adolescent

development. Our results also show that siblings’ genetic predisposition for educa-

tion has a positive effect on parental investments, which implies that ignoring the role

played by siblings’ genetic endowments likely leads to a positive bias in the estimated

effects of children’s own and parental genetic endowments.
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Table 1: Parental Preferences for Children’s Ability and Fertility Decisions

Endowment of 1st child High Low

Parental preferences
for high ability children

Strong Indifferent Strong Indifferent

Decision to have a 2nd child no no maybe maybe yes yes maybe maybe
Endowment of 2nd child
(relative to the 1st)

higher lower higher lower higher lower
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Table 2: Educational Polygenic Indexes, Years of Schooling and Other Education-Related Indicators

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Education attainment
(standardized)

Panel B: PPVT
(standardized)

Panel C: Overall GPA
(standardized)

Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected

EA PGI 0.386 0.191 0.369 0.340 0.227 0.373 0.359 0.203 0.369
SE (0.041) (0.074) (0.076) (0.039) (0.077) (0.079) (0.044) (0.081) (0.084)
p − value [<0.001] [0.010] [<0.001] [<0.001] [0.003] [<0.001] [<0.001] [0.013] [<0.001]

Parental EA PGI 0.234 0.407 0.132 0.282 0.202 0.363
SE (0.073) (0.075) (0.076) (0.078) (0.082) (0.085)
p − value [0.001] [<0.001] [0.083] [<0.001] [0.014] [<0.001]

Baseline controls No Yes Yes No Yes Yes No Yes Yes
N 604 604 604 572 572 572 452 452 452
R2 0.149 0.188 0.115 0.126 0.126 0.185

Note: GPA is the grade point average. PPVT is the Peabody Picture Vocabulary Test score. EA PGI is the educational attainment
polygenic index. The table displays OLS coefficients obtained after regressing educational outcomes (standardized to have mean
0 and standard deviation 1) on EA PGI. The regressions in columns 2, 3, 5, 6, 8, 9 include age, age-squared, a female dummy,
and parental EA PGI. EA PGI is always standardized to have mean 0 and standard deviation 1. Coefficient estimates and
standard errors in columns 3, 6, 9 are measurement-error-corrected as described in Appendix F. Standard errors clustered at
the family level are in parentheses.
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Table 3: The Effect of Educational Polygenic Index and Sibling Differences in Educational
Polygenic Indexes on Parental Investments

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Pooled Sample Non-Twins Twins

EA PGI-Sibling’s EA PGI -0.232 -0.233 -0.226 -0.265 -0.270 -0.256 -0.050 -0.043 -0.052
SE (0.084) (0.081) (0.082) (0.101) (0.100) (0.102) (0.134) (0.129) (0.138)
p − value [0.006] [0.004] [0.006] [0.009] [0.007] [0.012] [0.708] [0.737] [0.710]

EA PGI 0.205 0.212 0.201 0.168 0.174 0.148 0.245 0.266 0.273
SE (0.080) (0.077) (0.086) (0.093) (0.095) (0.117) (0.135) (0.123) (0.130)
p − value [0.011] [0.006] [0.019] [0.074] [0.067] [0.206] [0.071] [0.032] [0.037]

Parental EA PGI -0.001 -0.001 -0.002 0.011 0.023 0.008 -0.011 -0.014 -0.023
SE (0.073) (0.074) (0.089) (0.089) (0.093) (0.123) (0.110) (0.107) (0.116)
p − value [0.984] [0.994] [0.978] [0.903] [0.800] [0.945] [0.921] [0.893] [0.846]

N 604 604 604 412 412 412 192 192 192
Baseline controls No Yes Yes No Yes Yes No Yes Yes
Additional controls No No Yes No No Yes No No Yes

Note: EA PGI is the educational attainment polygenic index. The table reports the estimated effects of sibling differ-
ences in EA PGI, own EA PGI, and parental EA PGI on parental investments (as measured by an index standardized to
have mean 0 and standard deviation 1) in the pooled sample 1-3), in the sample of non-twins 4-6, and in the sample of
twins 7-9. EA PGI is always standardized to have mean 0 and standard deviation 1. The regressions in columns 2, 5, and
8 include age, age-squared, sibling differences in age (only included in the non-twins sample), a female dummy, and a
female sibling dummy. The regressions in columns 3, 6, and 9 include in addition a rural area dummy, an indicator that
both parents cohabit, and the SES index. Coefficient estimates and standard errors are measurement-error-corrected as
described in Appendix F. Standard errors clustered at the family level are in parentheses.
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